首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
车内噪声控制中的结构-声场耦合模态分析方法   总被引:4,自引:0,他引:4  
车内噪声中的结构噪声是由车身结构振动与车内空腔声场的耦合产生的,传统的振动模态分析方法在针对车内噪声控制时由于没有考虑这种耦合特性而存在很大的局限性。本文在介绍结构-声场耦合模态分析方法的原理基础上,研究了该方法在车内噪声测试分析与控制中的应用与工程实现,并开发出了相应的测试分析系统。该系统在某车车内噪声控制中取得了明显的降噪效果。  相似文献   

2.
针对某特种车车内噪声水平较高问题,建立车身结构与声固耦合有限元分析模型,并进行车身振动频响分析和车内声压响应分析;通过仿真结果与实车道路试验结果对比,验证车身结构和声固耦合有限元模型的有效性;利用耦合声学边界元法进行驾驶室内部声学特性研究,识别出不同工况的主要噪声频率;并对影响车内噪声的车身板件进行声学贡献分析,找到对车内声压贡献最大的板件;最后对声学贡献大的板件粘贴阻尼材料来对车内进行降噪,车内噪声得到较为明显改善。  相似文献   

3.
大型客车车身振动和声学特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为了解决客车车身振动导致乘员室产生低频噪声的问题,在对车身骨架结构、车室腔体进行模态特性分析和对车身结构进行频响分析的基础上,运用边界元法对车室进行声场分析和车身板块贡献度分析,进而找出车内噪声声压峰值处所对应的振动频率及该峰值下的“噪声源”板块,提出对车身结构的修改建议。  相似文献   

4.
为了解决客车车身振动导致乘员室产生低频噪声的问题,在对车身骨架结构、车室腔体进行模态特性分析和对车身结构进行频响分析的基础上,运用边界元法对车室进行声场分析和车身板块贡献度分析,进而找出车内噪声声压峰值处所对应的振动频率及该峰值下的“噪声源”板块,提出对车身结构的修改建议.  相似文献   

5.
利用频谱分析和模态分析技术分析常用转速下车内噪声成分及车身各部分振动情况,确定阻尼片粘贴位置,并将条形阻尼结构应用于车内噪声控制。试验表明条形阻尼结构能有效抑制车辆行驶中的车身振动,降低车内噪声。  相似文献   

6.
首先建立客车结构噪声传递函数模型分析车内噪声峰值频率点。然后通过工作变形分析函数模型分析在这些噪声峰值频率点车身发生振动变形较大的位置。将这些振动变形较大的位置设置成噪声贡献面板,建立面板声学贡献量分析模型来确定这些面板对车内噪声水平贡献程度,确定板件对车内声压影响主次关系。该方法为车内噪声评估和车身面板优化提供有效理论指导。  相似文献   

7.
车内噪声预测与面板声学贡献度分析   总被引:14,自引:4,他引:14  
面板声学贡献度分析是汽车NVH特性研究的重要内容,识别各面板对车内场点的贡献度对于控制车内噪声有着重要意义。利用有限元结合边界元的方法,建立三维车辆乘坐室声固耦合模型,使用ANSYS软件计算出乘坐室在20-200Hz频率的声固耦合振动特性后,采用LMS Virtual.lab软件预测了驾驶员左、右耳的声压响应。并通过各壁板对驾驶员右耳声压的面板贡献度分析,得出了各壁板对驾驶员右耳总声压的贡献度,为降低车内某点噪声进行结构修改提供理论依据。通过对结构修改,有效降低了车内某点噪声。  相似文献   

8.
首先建立客车结构噪声传递函数模型分析车内噪声峰值频率点。然后通过工作变形分析函数模型分析在这些噪声峰值频率点车身发生振动变形较大的位置。将这些振动变形较大的位置设置成噪声贡献面板,建立面板声学贡献量分析模型来确定这些面板对车内噪声水平贡献程度,确定板件对车内声压影响主次关系。该方法为车内噪声评估和车身面板优化提供有效理论指导。  相似文献   

9.
本文针对某一乘用车车身结构振动引起的声辐射,建立了车身结构、声学空腔以及声固耦合有限元模型,分析了该乘用车车身的声固耦合特性。通过对车身各板件的贡献度分析,确定了对车内噪声贡献度最大的壁板。针对该壁板的阻尼减振降噪优化设计,建立了拓扑优化模型,采用渐进优化算法(ESO),计算了阻尼材料的优化布局。研究结果表明:阻尼材料的优化布局使阻尼材料的使用率大大提高,50%的阻尼材料用量能基本达到全覆盖阻尼材料壁板的降噪效果,阻尼结构优化设计对车内噪声控制具有一定的理论指导意义。  相似文献   

10.
系统性地建立了阻隔结构降噪试验研究方法。建立面向白车身的阻隔结构降噪性能测量方法,通过对比阻隔结构拆除前后白车身模态与传递函数的变化情况,分析其对于车身低频噪声的抑制能力;建立面向整车的阻隔结构降噪性能转鼓试验方法,用以评估其对于发动机噪声、轮胎路面噪声的抑制能力;建立面向整车的阻隔结构降噪性能风洞试验方法,用以评估其对于气动噪声的抑制能力。试验结果表明,阻隔结构降低车内噪声主要有两个方面:一方面,空腔阻隔结构增强了车身的模态阻尼,抑制车身的振动,从而降低了车内低频噪声;另一方面,阻隔结构切断了车外噪声经过车身侧围空腔入侵乘员舱的传播途径,从而降低了车内高频噪声。  相似文献   

11.
某型车辆驾驶室内部噪声分析研究   总被引:2,自引:0,他引:2  
建立了某型车辆驾驶室结构的三维有限元模型,对驾驶室进行了试验模态分析,得到了模态参数,检验和修正了结构的三维有限元模型,对驾驶室结构进行了动态响应分析.采用边界元法进行了驾驶室内部声学特性研究,对驾驶员耳旁的声压和声学灵敏度进行了分析,得出了驾驶室内声场的声学特性,对驾驶室结构提出改进措施,有效地降低了车内噪声.  相似文献   

12.
车辆噪声源识别方法综述   总被引:1,自引:0,他引:1  
在车辆产业中,噪声问题越来越突出,噪声源识别方法是车辆噪声控制的重要前提。近年来,车辆噪声源识别的方法得到快速发展,但仍需不断改进和完善。本文对车辆噪声源识别方法进行总结,将车辆噪声源识别方法分为传统方法、基于信号处理方法和基于声阵列技术方法三类,并描述和分析各种识别方法的特点。最后总结全文,展望未来车辆噪声源识别方法。  相似文献   

13.
统计能量分析在汽车车内噪声分析中的应用   总被引:5,自引:0,他引:5  
建立了用于汽车车内高频噪声分析的整车SEA模型,介绍了工程设计中车身子系统SEA模型和整车噪声传递路径分析方法的应用,最后以分析实例说明了统计能量分析在汽车车内噪声性能设计中的适用性和准确性。  相似文献   

14.
车内低频轰鸣声严重影响整车的乘坐舒适性。为此对某非承载式SUV车加速工况下1 700 r/min附近出现的轰鸣声问题进行排查研究,通过阶次分析、传动系扭振分析、传递函数分析和空腔模态分析技术分析发现引起1 700r/min附近车内噪声的原因是发动机二阶扭矩波动引起的传动系扭振经过后桥传递到车内放大后,与车内空腔模态产生耦合,从而产生较大的轰鸣声。通过采取加装扭转减振器的措施,有效抑制传动系扭振,试验结果表明车内轰鸣声得到明显改善,整体降低7.5 d B(A)左右,主观评价可接受。对低频轰鸣声问题的排查和解决有一定参考作用。  相似文献   

15.
针对某SUV试制车基于GB 1495-20××草案的室内通过噪声超标问题,在半消声室内的低噪声四驱转毂试验台上,首先使用声学照相机对被测车辆在规定工况下行驶时的主要噪声源进行快速准确定位,然后应用逐一拆除屏蔽的方法,实现了对影响通过噪声的各主因素的贡献量排序分析,并依此提出相应的整改措施。采取整改措施后的验证结果表明,室内通过噪声较原车降低了2.8dB(A),达到了对标要求。本方法可为提高通过噪声贡献量分析试验的效率和测试一致性提供参考。  相似文献   

16.
在车身顶棚内蒙皮表面进行阻尼处理,建立阻尼处理后的车身有限元模型。进行模态分析,振动响应分析,并将车身与车内声腔模型进行声固耦合计算。计算结果和阻尼处理前的声压级比较,证明车身表面阻尼处理能够有效降低乘坐室内噪声。  相似文献   

17.
刘海军  孙富强  吴杨 《声学技术》2021,40(2):234-239
汽车高速行驶的过程中,速度超过100 km·h-1时,气动噪声对车内噪声环境的贡献起主导作用,突显出气动声源的研究与控制的重要性。采用试验与数值计算相结合的方法研究了轮罩区域的气动噪声与车内噪声环境的相关性,推导出了轮罩区域气动噪声的频率公式的修正系数与风速的关系,得到轮罩区域气动噪声对前排乘客舒适性影响较小,对后排乘客位的舒适性影响较大的结论。初步获得了轮罩区域气动噪声的控制技术,该技术一定程度上抑制了轮罩区域的气动噪声,改善了车内的噪声环境,提高了车内的声品质。  相似文献   

18.
通过对轻轨车辆内部的噪声测试实验,分析轻轨车辆内部的声场分布规律、噪声频谱特性和噪声通过分析产生的原因,得出轻轨车辆内部主要噪声源是轮轨噪声,频带主要集中在400~2000 Hz;测量分析两轻轨列车交会时车内噪声的变化。为轻轨列车的降噪治噪提供实验依据。  相似文献   

19.
以不同行驶状态的机动车噪声排放模型为基础,对三种典型控制方式下的交叉口噪声进行预测研究。采用实验的方法分别对大、中、小型单辆车在怠速、匀速、加速、减速等各种行驶状态下的噪声值进行测定,通过回归分析得到不同行驶状态下的机动车噪声排放模型,并以某信号控制交叉口的实测数据为例,用计算机仿真的方法证明该模型对于交叉口噪声模拟的较高适用性。进而将该排放模型应用于信号控制、无信号控制以及环形等控制方式的交叉口进行噪声预测,通过不同交通流量时交叉口的平均噪声级以及噪声的分布情况等对比,得到各种控制方式下交叉口噪声的若干特点和区别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号