首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
以富勒烯C60、4-(N,N-二甲基氨基)苯甲醛为原料,通过1,3-偶极环加成反应合成了N-甲基-2-[4-二甲基氨基]苯基-3,4-富勒烯基吡咯烷(NMDAPF)。首次采用表面活性剂协助自组装的方法制备出该C60衍生物的微米花状结构,通过扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED)、拉曼光谱(Raman)、热重分析(TGA)和荧光光谱(PL)进行表征,考察了溶液浓度、醇与溶剂体积比、表面活性剂种类、表面活性剂浓度以及温度对其形貌和晶体结构的影响。结果表明:在CCl4溶剂中,该C60衍生物溶液浓度为1.0mg/mL,异丙醇与CCl4体积比为4∶1,以十六烷基三甲基溴化铵(CTAB)为表面活性剂,其浓度为5.0mmol/L,温度为20℃时,NMDAPF晶态形貌为规整的微米花状结构。  相似文献   

2.
以富勒烯C60、4-(N,N-二甲基氨基)苯甲醛为原料,通过1,3-偶极环加成反应合成了N-甲基-2-[4-二甲基氨基]苯基-3,4-富勒烯基吡咯烷。首次采用表面活性剂协助自组装的方法制得C60衍生物的微米片结构。结果表明,N-甲基-2-[4-二甲基氨基]苯基-3,4-富勒烯基吡咯烷结晶态形貌为片状结构,形貌和晶体结构受溶剂种类、溶液浓度、醇与溶剂体积配合比、表面活性剂浓度的影响。当甲苯为溶剂,溶液浓度为1.0mg/mL,异丙醇与甲苯体积配合比为3∶1,表面活性剂十六烷基三甲基溴化铵(CTAB)浓度为5.0mmol/L时,N-甲基-2-[4-二甲基氨基]苯基-3,4-富勒烯基吡咯烷结晶态形貌为宽度约3μm、厚度约50nm规则的正方形片状结构。  相似文献   

3.
以富勒烯C_(60)、苯甲醛为原料,通过1,3-偶极环加成反应合成了N-甲基-2-苯基-3,4-富勒烯基吡咯烷。首次采用表面活性剂协助自组装的方法制备出该C_(60)衍生物的微米针结构,经扫描电子显微镜(SEM)、热重分析(TGA)和荧光光谱(PL)表征。结果表明:N-甲基-2-苯基-3,4-富勒烯基吡咯烷结晶态形貌为针状结构,其形貌和晶体结构受溶剂种类、溶液浓度、醇与溶剂体积比及表面活性剂的影响。  相似文献   

4.
姚兰芳  杜梅芳  吴兆丰  吴广明  沈军  王珏 《功能材料》2004,35(Z1):2969-2972
利用溶胶-凝胶技术,在酸性条件下,采用十六烷基三甲基溴化氨(CTAB)为表面活性剂,正硅酸乙酯为硅源,以及二次去离子水,盐酸为催化剂等原料制备前驱体溶胶.利用表面活性剂与硅源水解后形成的聚集体相互作用,在溶液中形成分子自组装体,通过简单提拉迅速蒸发溶剂等方法制备二氧化硅-表面活性剂纳米介孔薄膜.分析了表面活性剂浓度对薄膜相结构的影响,发现表面活性剂浓度的变化,对薄膜的微结构和性能都有影响,通过调节表面活性剂的浓度可以对该纳米薄膜的微观结构和性能等进行控制,对样品进行了红外光谱,X射线衍射结构分析,原子力显微镜观察表面形貌.  相似文献   

5.
通过五水硝酸铋水解法制备微米花状结构氯氧化铋(BiOCl)晶体。探究反应温度、时间和表面活性剂十六烷基三甲基溴化铵(CTAB)对BiOCl晶体形貌的影响,利用XRD、FE-SEM、FT-IR和TGA等表征方法对BiOCl晶体进行特征分析。结果表明,在CTAB表面活性剂的作用下,水解温度为90℃,水解反应2h可以得到微米花状BiOCl晶体,并具有良好的珠光性能。通过对所制备的BiOCl晶体进行吸油量测定,该微米花状BiOCl珠光颜料的表面亲油效果良好。  相似文献   

6.
以乙酸铜为原料,采用溶剂热法合成了球形直径约为2~3μm和八面体粒径大小约为4μm的氧化亚铜颗粒。通过选用不同的还原剂如三乙醇胺和乙二醇,系统研究了不同反应体系中如反应温度、溶剂、原料配比和添加表面活性剂十六烷基三甲基溴化铵(CTAB)对微米结构氧化亚铜晶型与形貌的影响,选出制备氧化亚铜八面体和球形的最佳条件,并初步探讨了氧化亚铜微米颗粒的生长机理。  相似文献   

7.
分别以乙酰丙酮铁(Fe(acac)3)和氯铂酸(H2PtCl6.6H2O)作为Fe源和Pt源,乙二醇作为还原剂和溶剂,通过多元醇还原法制备出单分散的FePt纳米颗粒,并研究了表面活性剂油酸油胺和CTAB对FePt纳米颗粒形貌和磁性能的影响。通过X射线衍射仪(XRD)、透射电子显微镜(TEM)和振动样品磁强计(VSM)对纳米颗粒进行表征。结果表明,表面活性剂油酸油胺和CTAB修饰的FePt纳米颗粒均为面心立方(FCC)结构,分散性良好,粒径分布较未使用表面活性剂时变窄;油酸油胺修饰的FePt形貌主要是球形,但是有四方形纳米结构出现;而CTAB修饰的FePt形貌有蠕虫状产生。VSM结果显示其矫顽力都趋近于零,呈现超顺磁性。  相似文献   

8.
廖培义  陈延明  王立岩  高洁 《材料导报》2021,35(z1):108-111
以乙酸锌为前驱物,乙醇、正丙醇和正丁醇为溶剂,不加入表面活性剂,通过改变反应体系中醇水体积比、pH值、前驱物浓度,在反应温度80℃、反应时间30 min的条件下,制备得到不同尺寸和形貌的纳米氧化锌粒子.通过透射电子显微镜(TEM)、X射线衍射和紫外-可见吸收光谱等方法对纳米氧化锌进行了表征.结果表明:所合成的纳米氧化锌样品在350~365 nm范围内具有较为明显的吸收峰,减小醇水体积比、减弱溶剂极性、增加前驱物乙酸锌浓度,均可以导致纳米氧化锌粒子尺寸变大、团聚加重,前驱物溶液pH值的改变对纳米氧化锌的吸收峰影响不大.  相似文献   

9.
利用溶剂挥发法,通过甲苯和间二甲苯溶剂对富勒烯纳米晶结构和形貌的控制作用,合成垂直阵列结构的微尺寸的C_(60)纳米晶。利用SEM、Raman、XRD等方式对材料的形貌和结构进行了表征,并对其进行了电子场发射性能的研究。实验结果表明,实验中获得的样品是具有六棱柱形貌的C_(60)微米管/棒状材料;原始合成的C_(60)微米管/棒材料是具有六角(hcp)和面心立方(fcc)混合晶体结构的溶剂化微米晶体,在真空下加热处理可以去除掺杂在晶格内部的溶解,获得纯C_(60)微米晶阵列。实验发现,该C_(60)微米晶体阵列材料具有良好的场发射性能。  相似文献   

10.
以三聚氰胺和磷酸为原料,采用溶剂热方法合成出纳米三聚氰胺磷酸盐(NMP)阻燃剂。用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电镜(SEM)等手段表征产物的组成和结构,研究了不同溶剂(蒸馏水、无水乙醇和苯)、不同类型的表面活性剂(十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTAB)、壬基酚聚氧乙烯醚(NP))、以及反应温度和反应时间对产物形貌的影响。结果表明:只有使用苯为溶剂才能合成出NMP,表面活性剂的种类对产物的形貌有较大的影响。将合成的NMP与市售的微米级MP(MMP)在增韧酚醛泡沫中的阻燃性能和力学性能对比,NMP阻燃增韧酚醛泡沫的弯曲强度比MMP阻燃增韧酚醛泡沫提高了39%。  相似文献   

11.
王硕  杨梅  贾依文  张利君 《包装工程》2023,44(15):24-31
目的 研究溶液质量分数和非溶剂体积分数对PVC薄膜表面形貌和疏水性能的影响,以获得具有超疏水表面的PVC薄膜。方法 以四氢呋喃为良溶剂、乙醇为非溶剂,利用非溶剂诱导相分离的原理,采用旋涂法在玻璃基底上制备超疏水的聚氯乙烯(PVC)涂膜;通过对PVC样品的疏水性、表面形貌、结晶性能和热性能进行分析,探究溶液质量分数以及非溶剂的体积分数对PVC样品性能的影响。结果扫描电镜和接触角测试表明,添加一定体积分数的乙醇使得所制备的PVC样品形成了多孔膜层以及纳米级聚合物球粒,从而提高了PVC样品的疏水性。XRD测试结果表明,添加乙醇并不会改变PVC样品的无定形结构。结论 PVC溶液质量分数对所制备PVC样品的疏水性能和表面结构没有明显影响,乙醇体积分数为30%~40%时,可形成表面水接触角大于150°的超疏水表面。  相似文献   

12.
以三聚氰胺和氰尿酸为原料,采用溶剂热方法制备出纳米三聚氰胺氰尿酸盐(NMC)。分别利用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电镜(SEM)等手段对其组成和结构进行表征,研究了不同溶剂(蒸馏水、无水乙醇和苯)、不同类型的表面活性剂(十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTAB)、壬基酚聚氧乙烯醚(NP))、反应温度和反应时间对产物粒径的影响。结果表明,只有用水为溶剂才能合成出NMC;采用苯和无水乙醇溶剂时产物的粒径较大,为微米级。用CTAB和SDS为表面活性剂制备的产物平均粒径约为100 nm,而用NP活性剂制备的产物平均粒径则达到3.1μm。制备NMC合适的反应温度为150℃,反应时间为1-3 h。比较了NMC和微米级三聚氰胺氰尿酸盐(MMC)在增韧酚醛泡沫中的阻燃性能和力学性能。结果表明,与MMC增韧酚醛泡沫相比,NMC阻燃增韧酚醛泡沫的氧指数和弯曲强度都有所提高。  相似文献   

13.
王悦辉  张琦  周济 《材料导报》2008,22(3):144-147
在适量的银晶种和十六烷基溴化铵(CTAB)表面活性剂存在条件下,在水溶液中采用抗坏血酸还原硝酸银法合成出银纳米立方体,并采用紫外-可见分光光度计和透射电子显微镜等技术对银纳米立方体的显微结构和光谱学性能进行了表征.探讨了CTAB溶液的浓度、抗坏血酸浓度、溶液pH值和热处理条件等因素对纳米银粒子形貌和尺寸的影响.  相似文献   

14.
使用氧化钆、氧化铕和偏钒酸铵为原料,以CTAB为表面活性剂,用水热合成法改变表面活性剂CTAB加入量和p H值,制备出从微米尺度到纳米尺度的一系列Gd VO4:Eu3+荧光粉。使用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和荧光光谱(PL)等测试手段对样品的物相、形貌、发光性能进行表征,研究了表面活性剂CTAB浓度和反应液的p H值对Gd VO4:Eu3+荧光粉形貌与性能的影响。结果表明,反应液的p H值显著影响样品的晶粒尺寸,p H=1时得到了微米级的晶体颗粒,p H=4时得到边长为200 nm左右的晶片产物,而在p H=7时得到尺度10-20 nm的小晶片,在p H=10的碱性条件下出现了氢氧化物杂质。不同表面活性剂的加入量显著改变了晶体生长方向和团聚方式,从而改变了样品的最终形貌。样品的发光性能随着晶粒尺寸和结晶度变化显著,百纳米边长结晶良好的Gd VO4:Eu3+四方晶片的发光性能最为优良。  相似文献   

15.
乙醇/水混合溶剂沉淀制备纳米SrF_2及其粒径控制   总被引:1,自引:0,他引:1  
本文采用水/乙醇混合溶剂沉淀法,制备了不同粒径的SrF2纳米粉体,也在不同pH值的水溶液和不同表面活性剂CTAB、SDS的水溶液中,研究制备了纳米SrF2。用XRD、TEM观测分析了粉体的粒径和形貌。在纯水和水/乙醇体积比3∶1,1∶1,3∶5,1∶4的混合溶剂中,获得SrF2沉淀的粒径分别为32nm,19nm,23nm,16nm和13nm,粒径总体上随混合溶剂中乙醇含量升高而减小,其分散性和形貌规则性也随乙醇含量升高而变好。水溶液的pH值和表面活性剂对SrF2沉淀粒径无明显影响,相比之下,混合溶剂对粒径的影响显著。  相似文献   

16.
利用电导率(K)-增溶水量(ml)关系曲线研究了CTAB/正丁醇/环己烷/水四组分微乳体系在不同增溶水量时的3种结构,即油包水(W/O)、油水双连续(B.C.)、水包油(O/W).讨论了表面活性剂CTAB与助表面活性剂正丁醇不同浓度时对微乳液稳定性的影响,得出了微乳液稳定时CTAB和正丁醇的合适配比.  相似文献   

17.
以二水合乙酸锌和氢氧化钠为原料,分别以表面活性剂十六烷基三甲基溴化铵(CTAB)和聚乙烯吡咯烷酮(PVP)为结构导向剂,采用简单的水热法制备了不同形貌的纳米氧化锌。研究了两种表面活性剂对纳米氧化锌形貌和光致发光性能的影响,并探讨了表面活性剂的作用机理。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和室温光致发光光谱(PL)等测试方法对样品的结构、形貌和发光性能进行了表征。结果表明:添加了表面活性剂后,样品形貌和尺寸都更加均匀,紫外发射峰强度相对增加。  相似文献   

18.
可聚合阴离子表面活性剂微乳液聚合制备多孔高分子材料   总被引:4,自引:0,他引:4  
利用易于合成的马来酸单十二醇酯钠盐为可聚合表面活性剂,以甲基丙烯酸羟乙酯为助表面活性剂,研究了甲基丙烯酸甲酯的微乳液聚合,制得了具有连续孔结构(即开孔结构)的高分子材料,孔的尺寸为100 nm至数微米,材料呈半透明至白色不透明状。用场发射扫描电镜对材料的微观结构进行表征;考察了表面活性剂浓度以及表面活性剂水溶液(水相)的含量对材料结构的影响。  相似文献   

19.
《中国粉体技术》2017,(5):19-23
以Zr(NO_3)_4·5H_2O和CO(NH_2)_2为原料,乙醇为溶剂,通过水热法合成亚微米级球形ZrO_2颗粒;用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、热重-差热分析仪(TGA-DTA)、紫外-可见光吸收光谱仪(UVVis)对ZrO_2颗粒进行分析表征,研究工艺条件对球形ZrO_2颗粒尺寸和形貌的影响。结果表明:通过水热法合成的球形ZrO_2颗粒粒径分布较窄,添加适量的表面活性剂、无机盐溶液及水对产物的尺寸与形貌具有一定的影响;添加适量水可获得粒径分布更窄的球形ZrO_2颗粒,且热处理对球形ZrO_2颗粒的粒径大小和形状影响不大。  相似文献   

20.
采用溶剂热法,以CuCl2·2H2O、Zn(Ac)2·2H2O、SnCl4·5H2O作金属源,硫脲作硫源,乙二醇作溶剂,在体系中加入不同表面活性剂PVP和CTAB,研究PVP、CTAB协同效应对制备CZTS颗粒的影响。通过XRD、SEM、UV-Vis方法检测分析CZTS颗粒的物相、结构、形貌以及光学性能。结果表明:所得CZTS颗粒均具有锌黄锡矿结构;当在体系中同时加入PVP、CTAB时,两者的协同效应使得颗粒形貌发生明显变化,光学带隙也发生相应变化;当体系中加入的表面活性剂PVP∶CTAB=3∶1时,合成的颗粒结晶性较好、颗粒形貌为单分散似花状微粒、光学带隙为1.48 eV,与太阳能电池所需的最佳带隙接近。最后,提出了相应的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号