首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用熔融共混方法制备了聚(3-羟基丁酸酯-co-4 -羟基丁酸酯)[P( 3HB-co-4HB)]和酰胺成核剂的复合体系,并通过万能材料试验机、差示扫描量热仪( DSC)、偏光显微镜(POM)和X射线衍射仪(XRD)等测试手段考察了不同含量酰胺成核剂对P( 3HB-co-4HB)基体的力学、热力学及结晶性能的影响.结果表明:酰胺成核剂在共混体系中起到成核剂作用,可有效改善P(3 HB-co-4HB)结晶性能,提高其韧性.  相似文献   

2.
采用熔融共混方法制备了聚(3-羟基丁酸酯-co-4-羟基丁酸酯) [P(3HB-co-4HB)]和纳米氮化钛(TiN)的复合体系,并通过万能材料试验机、差示扫描量热仪(DSC)、偏光显微镜(POM)、X射线衍射仪(XRD),热失重分析仪(TG)等测试手段考察了不同含量TiN对P(3HB-co-4HB)基体的力学、热力学及结晶性能的影响.结果表明:纳米氮化钛在共混体系中起到成核剂作用,可有效改善P(3HB-co-4HB)结品性能,提高其韧性.  相似文献   

3.
聚乳酸(PLA)/聚(3-羟基丁酸酯-co-4-羟基丁酸酯)[P(3HB-co-4HB)]共混后,通过电子束辐照在0~100 kGy的剂量范围内使之交联,然后测试凝胶含量、材料回缩性能、力学性能,并进行差示扫描量热分析。结果显示,辐照交联PLA/P(3HB-co-4HB)后,材料具有形状记忆功能,其屈服强度提高,断裂伸长率降低;辐照交联提高了PLA/P(3HB-co-4HB)耐热性,降低了材料结晶性能。  相似文献   

4.
介绍了生物可降解材料聚(3-羟基丁酸酯-co-4-羟基丁酸酯)(P(3HB-co-4HB))的性能及特点;综述了针对P(3HB-co-4HB)加工温度窄、脆性大、成本高等缺点而进行的增塑改性、扩链改性、共混改性的技术进展以及P(3HB-co-4HB)纺丝成纤技术;阐述了利用P(3HB-co-4HB)可塑性、生物降解性和生物相容性等在医疗领域的应用情况及发展前景;指出P(3HB-co-4HB)的研究将集中在其材料加工流动性、结晶性能的改善及其纤维加工技术与纤维表面整理技术等方面。  相似文献   

5.
聚(3-羟基丁酸酯-co-4-羟基丁酸酯)的扩链改性   总被引:1,自引:0,他引:1  
采用环氧丙烯酸型扩链剂改性聚(3-羟基丁酸酯-co-4-羟基丁酸酯)[P(3HB-co-4HB)],考察了扩链剂对熔体黏弹性、力学性能和成型发泡的影响.用流变仪测试熔体稳态黏度与剪切速率、动态黏弹模量与角频率、模量与时间的关系,用扫描电子显微镜观察改性前后P(3HB-co-4HB)的断面形貌.结果表明,扩链剂的加入提高...  相似文献   

6.
聚(3-羟基丁酸酯-co-4-羟基丁酸酯)的性能   总被引:1,自引:0,他引:1  
采用毛细管流变仪、差示扫描量热仪、热失重分析仪及偏光显微镜(POM)研究了聚(3-羟基丁酸酯-co-4-羟基丁酸酯)[P(3HB-co-4HB)]的流变性能、热性能及结晶性能.P(3HB-co-4HB)熔体属于典型的假塑性流体,剪切应力与剪切速率关系符合Ostwald-de Wale幂率定律,熔体表观黏度与温度的关系符合Arrhenius方程;P(3HB-co-4HB)的玻璃化转变温度约为-10℃,熔点在100~120℃,降解温度约为205℃;POM观察发现,P(3HB-co-4HB)在约78℃时球晶半径径向生长速率最大.  相似文献   

7.
用熔融模压法制备了柠檬酸三乙酯(TEC)增塑的4HB含量不同的聚(3-羟基丁酸酯-co-4-羟基丁酸酯)[P(3HB-co-4HB)]共混物,用差示扫描量热仪(DSC)、广角X射线衍射仪(WAXI))和拉伸试验对共混物的热性能、结晶结构和力学性能进行了表征,考察了增塑剂TEC的用量和4HB含量对共聚酯性能的影响。结果表明:随着TEC用量的增大,P(3HB—co-17%4HB)共聚酯体系的结晶度减小,其熔融温度、玻璃化温度和结晶温度降低,屈服强度、断裂强度及模量也降低,屈服伸长率增大;随4HB含量的增大,相同用量的TEC共混体系的熔点、玻璃化温度和结晶温度降低,屈服强度、断裂强度和模量减小。  相似文献   

8.
文章介绍了生物塑料聚(3-羟基丁酸酯-co-4-羟基丁酸酯)(P3/4HB)的性能;综述了针对P3/4HB加工成型温度窄、产品脆性大、应用成本高等缺点而进行的物理改性、化学改性等技术进展;提出了对P3/4HB发展过程中需要解决的问题;同时指出P3/4HB的研究将集中在其材料结晶性能、加工流动性改善的发展方向。  相似文献   

9.
张蕤  陆宁  朱清  苏天翔  王坚剑 《化工进展》2014,33(10):2716-2721
以可生物降解聚(3-羟基丁酸酯-co-4-羟基丁酸酯)[P(3,4)HB]为基体,有机改性层状化合物?-磷酸锆(OZrP)为增强相,采用溶液插层法制备了P(3,4)HB/OZrP纳米复合材料。分别用X射线衍射仪(XRD)、扫描电镜(SEM)、偏光显微镜(POM)、热重分析仪(TGA)和差式扫描量热仪(DSC)等对其微观结构、热稳定性、结晶行为及降解性能进行了表征与分析。研究表明,具有纳米片层结构的OZrP能均匀分散在P(3,4)HB基体中形成纳米复合结构,OZrP能通过异相成核作用促进P(3,4)HB的结晶,并能促进P(3,4)HB的降解,但降低P(3,4)HB 的热稳定性。  相似文献   

10.
采用共混的方法制备了聚(3-羟基丁酸酯-co-4-羟基丁酸酯)/α-半水硫酸钙晶须(P(3HB-co-4HB)/α-CSH)复合材料,研究了α-CSH用量对复合材料结晶性能和流变性能的影响。结果表明:α-CSH对P(3HB-co-4HB)具有明显的异相成核作用,提高了复合材料的熔融温度和结晶度。P(3HB-co-4HB)/α-CSH复合体系的表观黏度随着剪切速率的增加和温度的升高而逐渐降低,随着α-CSH用量的增加先减小后增大。复合材料的非牛顿指数(n)随着温度的升高而增大,随着α-CSH用量的增加先增大后减小,且n值均小于1,属于假塑性流体。复合材料的黏流活化能随着剪切速率的增加而逐渐减小,随着α-CSH用量的增加先减小后增大,但总体呈下降的趋势。  相似文献   

11.
李梅  李志强 《中国塑料》2007,21(1):48-51
对生物可降解聚(3-羟基丁酸和4-羟基丁酸酯)共聚物[Poly(3HB-co-4HB)]进行研究。3-羟基丁酸和4-羟基丁酸酯共聚物大大改变了聚3-羟基丁酸酯(PHB)均聚物的缺点,通过一系列物理实验方法证明,随着4-羟基丁酯酯(4HB)含量增加,熔体流动速率由20.7g/10min降低至8.9g/10min,而黏度增加1.8倍,熔融温区增宽20℃,结晶度由11.57%减小到50%,球晶消失。拉伸强度由13.5MPa降低至7.9MPa,断裂伸长率由796%增加至1020%不断裂,柔韧性增加。玻璃化转变温度由-7.29℃升高至-3.17℃。对原料下游制品的开发有广泛的应用价值。  相似文献   

12.
李梅  高珊 《中国塑料》2008,22(3):36-41
研究了可完全生物降解的聚(3-羟基丁酸-co-4-羟基丁酸醋)与聚乳酸(PLA)共混体系,利用偏光显微镜、动态和静态剪切流变、X射线衍射和差示扫描量热仪,分析共混体系的结晶性能、流变性能和热稳定性。结果表明:随着PLA添加量增加,熔融温度由156.05℃降低到130. 32 C,结晶温度由102. 09℃降低62. 33 C,结晶度下降。而玻璃化转变温度由一5 . 69℃上升3. 42 C,体系的热稳定性和豁弹性提高。  相似文献   

13.
聚(3-羟基丁酸-co-4-羟基丁酸酯)[P(3HB-co-4HB)]是一种新型可生物降解高分子材料。综述了近年来P(3HB-co-4HB)在改性方面的研究进展情况,涵盖了扩链、交联、接枝等化学改性以及成核、增塑、共混等物理改性。同时对P(3HB-co-4HB)相关研究中存在的问题进行了分析并对其在未来的发展应用作出了展望。  相似文献   

14.
聚3-羟基丁酸酯4-羟基丁酸酯性能研究   总被引:1,自引:1,他引:0  
概述了聚羟基脂肪酸酯(PHA)类生物塑料的发展过程,分析了聚3-羟基丁酸酯4-羟基丁酸酯(P34HB)的结构、综合性能、加工特性,详细介绍了P34HB的改性方法。结果表明:P34HB是新一代优异的生物塑料,通过改性,其力学性能与聚丙烯和聚乙烯相近,可以在传统塑料加工设备上加工成型。但对P34HB的研发及应用还需做大量工作。  相似文献   

15.
采用熔融共混方法制备了一系列聚(3-羟基丁酸酯-共-4-羟基丁酸酯)/马来酸酐(MA)的共混物。研究了MA含量对共混物力学性能的影响,并且采用差示扫描量热仪和热失重分析仪对共混物热性能的变化进行了研究。结果表明,MA的加入有效改善了聚(3-羟基丁酸酯-共-4-羟基丁酸酯)的力学性能和热稳定性,拓宽了其加工窗口,其中加入0.5份MA就可将共混物的起始热分解温度提高19.31℃。同时,MA能够改善3-羟基丁酸酯微区和4-羟基丁酸酯微区的相容性。  相似文献   

16.
采用熔融纺丝法制备了聚乳酸(PLA)/聚(3-羟基丁酸酯-co-4-羟基丁酸酯)(P34HB)共混纤维,分析了P34HB含量对PLA/P34HB共混纤维热学性能、结晶性能和力学性能的影响,并研究了拉伸倍数对P34HB含量为30%(w)的共混纤维性能的影响。结果表明:当拉伸倍数为3倍时,随着P34HB含量的增加,PLA/P34HB共混纤维的结晶度逐渐降低,断裂强度和初始模量逐渐下降,而断裂伸长率逐渐增大;随着拉伸倍数的增大,P34HB含量为30%(w)的PLA/P34HB共混纤维的结晶度、断裂强度和初始模量逐渐提高,断裂伸长率逐渐降低,当拉伸8倍时,共混纤维的断裂强度达到425 MPa,断裂伸长率为15.5%,初始模量为7 005 MPa。  相似文献   

17.
采用熔融共混法制备了聚乳酸/聚3-羟基丁酸酯-co-3-羟基己酸酯(PLA/PHBH)共混物.研究了共混物在储存过程中分散相PHBH的缓慢结晶行为及其对PLA基体阻隔性能、力学性能和透明性的影响规律.结果 表明,当PHBH的质量分数为30%时,PLA/PHBH共混物表现出优异的韧性,其断裂伸长率为150%.在储存过程中...  相似文献   

18.
《塑料》2014,(6)
采用溶剂挥发法制备了不同比例的聚乳酸(PLA)改性聚(3-羟基丁酸酯-co-4-羟基丁酸酯)[P(3HB-co-4HB)]共混材料。通过对共混物拉伸性能以及其在土壤及模拟体液中的质量损失率、表面形貌的测定,研究了其降解行为,并同纯P(3HB-co-4HB)做了对比。结果表明:随着PLA含量的提高,共混膜的拉伸强度及拉伸模量均有提高,但提高幅度不大;共混膜的降解能力显著提高,在土壤中降解90 d质量损失率可达98.2%,模拟体液中降解失重小于土壤降解,为60.60%。  相似文献   

19.
为了促进骨缺损的快速修复,文章利用3D打印技术制造了不同掺锶羟基磷灰石(SrHA)含量的具有多孔隙结构的聚(3-羟基丁酸酯-co-4-羟基丁酸酯)/掺锶羟基磷灰石(P34HB/SrHA)人工骨修复支架,并研究了SrHA含量对复合支架流变性能、体外降解性能和促成骨活性的影响。结果表明:SrHA含量为0~20%时,P34HB/SrHA复合材料的表观黏度随着SrHA含量的增加而逐渐降低,SrHA显著提高了P34HB的可打印性能。3D打印P34HB/SrHA复合支架均具有规则的外观和规整的内部孔隙结构,SrHA在P34HB基体中能够均匀分散。当SrHA含量为20%时,P34HB/SrHA复合支架的压缩强度与P34HB支架相比增加了83.1%,力学性能得到提升。P34HB/SrHA复合支架随着时间的延长而逐渐降解,降解率与SrHA的含量成正比。与P34HB支架相比,P34HB/SrHA复合支架的pH值为7.4±0.1,SrHA在降解过程中起维持p H值稳定的作用。P34HB/SrHA能够促进细胞的增殖和分化,具备较好的成骨诱导活性。  相似文献   

20.
《塑料科技》2015,(10):73-76
采用熔融共混法,以聚(3-羟基丁酸-co-3-羟基戊酸酯)(PHBV)为增韧剂对聚乳酸(PLA)进行改性,得到PLA/PHBV复合材料。研究了PHBV用量对PLA/PHBV复合材料结晶性能和力学性能的影响。结果表明:随着PHBV用量的增加,PLA/PHBV复合材料的结晶度逐渐减小,拉伸强度和弯曲强度逐渐降低,而断裂伸长率则逐渐增大(当PHBV用量为50%时,复合材料的断裂伸长率比纯PLA提高了1.72倍),同时复合材料的冲击强度亦有所提高。由此可见,在不明显降低拉伸强度和弯曲强度的前提下,适量PHBV的添加能够改善PLA/PHBV复合材料的韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号