首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
采用X射线衍射和差热分析系统研究了B4C和Al在高温条件下的化学反应和相组成.研究结果表明:B4C和Al在0~1 500 ℃温度区间内反应生成相有Al3BC、AlB2、Al4C3和AlB12C2.在该区间内,B4C和Al生成新相的反应分为三个阶段:Al3BC和AlB2相在625~690 ℃温度区间反应生成;Al4C3相在1 150~1 185 ℃温度区间反应生成;AlB12C2相在1 320~1 350 ℃温度区间反应生成.分析了无压浸渗法所制备B4C/Al复合材料的相组成,并测试了其力学性能.  相似文献   

2.
采用5052半硬铝带分别包覆Al_2O_3、SiC、B_4C、TiC陶瓷颗粒制备的粉芯丝材进行电弧喷涂试验,制备了含陶瓷颗粒的铝基复合涂层。利用光学显微镜、XRD分析了涂层的微观组织和相结构,测试了复合涂层的显微硬度、耐磨性及耐腐蚀性。研究结果表明,制备的铝基复合涂层中含有一定数量的未熔陶瓷颗粒,涂层较为致密,无明显缺陷。含陶瓷铝基涂层的物相主要由Al和所添加的陶瓷相构成,其中在含B_4C陶瓷涂层中还存在Al_3BC、Al_4C_3和AlB_2等新相。陶瓷颗粒的加入有利于提高铝基复合涂层的显微硬度,其中B_4C的加入使涂层中基体相显微硬度提高了1.5倍,这是由于B_4C陶瓷和Al反应生成Al_3BC、Al_4C_3和AlB_2硬质相。复合涂层的耐磨性均优于纯铝涂层,摩擦磨损的形式主要为粘着磨损。动电位极化腐蚀试验表明,含SiC和TiC陶瓷涂层具有较低的腐蚀电流,耐蚀性较好,含SiC陶瓷的复合涂层出现了明显的钝化现象。  相似文献   

3.
以(NH_4)_2MoO_4和C_6H_(12)O_6作为前驱体,NaCl+KCl(摩尔比1:1)为原料,采用熔盐合成法在900℃制备了纳米片层状Mo2C粉末,利用X射线衍射分析(X-ray diffraction,XRD)、扫描电子显微镜观察(scanning electron microscopy,SEM)等方法研究了Mo_2C粉末物相结构和微观形貌的演变规律。实验结果表明:反应中相变过程是由MoO_3变成MoO_2再到产物Mo_2C的生成;Mo_2C由斜方晶型向六方晶型转变的温度出现在900~1000℃区间;提高合成温度和延长反应时间有利于加快反应进程,但过高的合成温度会导致晶粒显著长大。  相似文献   

4.
通常铝石墨烯复合材料会生成较多的Al_(4)C_(3),使其电导率相对于纯铝下降较大。为减少Al_(4)C_(3)生成,采用粉体连续挤压法制备Al-Gr(石墨烯)复合材料。研究表明:采用粉体连续挤压法制备Al-Gr复合材料,Al与Gr在界面上生成的Al_(4)C_(3)相极少,抗拉强度提高,随着石墨烯含量的增加而增大,电导率随石墨烯含量增加而降低,但Al-0.5%Gr复合杆材电导率仍保持为62.28%IACS,相比基体纯铝仅下降2.1%,而抗拉强度提高了16.3%。  相似文献   

5.
以Al-B_2O_3粉末为原料,在氩气的保护下进行球磨,制备了Al_2O_3-Al B_(12)复合陶瓷粉体。对球磨不同时间的粉末进行X射线衍射(XRD)、差示扫描量热仪(DSC)和扫描电镜(SEM)检测,分析了混合粉末的物相变化、燃烧反应的临界温度变化以及混合粉末的结构变化,通过热力学计算,分析了球磨过程中化学反应发生的规律以及球磨对化学反应的影响及作用。研究结果表明:物相在球磨8 h内物相没有变化,球磨10 h时出现Al_2O_3和Al B12物相;球磨不同时间的粉末,其燃烧反应的临界温度随球磨时间的延长而下降;球磨8 h内粉末经历了塑性变形-冷焊-加工硬化-微断-破碎过程,球磨至10 h发生化学反应生成α-Al_2O_3-Al B12微米级复合粉体;由热力学计算,球磨过程中首先发生2Al+B_2O_3=Al_2O_3+2[B]的自蔓延反应,其放出的热量驱动Al+12B=Al B12的反应。球磨至4 h,反应的临界温度由1010.80℃下降到650.58℃,球磨至8 h临界温度下降到641.84℃,球磨能够促进反应进行。  相似文献   

6.
KR脱硫反应过程中使用纯石灰脱硫剂会生成高熔点硅酸钙覆盖在CaO颗粒表面阻碍脱硫反应进行,以往采用加萤石方法生成低熔点的共晶化合物来解决该问题,但会侵蚀炉衬,且污染环境。使用铝渣后,Al可以和CaO中被置换出的O结合生成Al_2O_3,促进脱硫反应进行,并且可以减少高熔点硅酸钙的生成量。利用工业试验研究加入铝渣对铁水脱硫反应的影响,并利用热力学计算阐述其作用机理。结果表明:加入铝渣后,脱硫反应开始阶段生成Al_2O_3和CaS,随着反应深入,生成的Al_2O_3与CaO结合生成钙铝酸盐,反应产物按照"Al_2O_3→CA6(CaAl_(12)O_(19))→CA_2(CaAl_4O_7)→CA(CaAl_2O_4)→C_3A(Ca_3Al_2O_6)"路径依次生成转变。铝渣中的金属铝可以降低铁水氧势,促进脱硫反应进行,并且铝渣中的Al_2O_3会和CaO反应生成低熔点的钙铝酸盐。使用铝渣后铁水硫质量分数均值可降至4.6×10~(-6),硫质量分数低于10×10~(-6)的比例提升至81.9%。  相似文献   

7.
为了研究不同反应温度条件下精炼渣矿相成分在碳酸化过程中微观结构特征变化,在不同碳酸化反应温度20、40、60、80℃下,采用X射线衍射(XRD)、扫描电镜(SEM)、热重(TG-DTG)、~(29)Si固体核磁共振等测试方法分析了精炼渣碳酸化特征变化。结果表明,随着碳酸化反应温度的升高,精炼渣与反应产物CaCO_3的粒径逐渐增加;精炼渣碳酸化反应由外向内进行,生成了大量的颗粒状碳酸钙,结构变得致密均匀。20℃下精炼渣碳酸化过程中C_2S(Ca_2SiO_4)、C_3S(Ca_3SiO_5)生成C-S-H(水化硅酸钙)凝胶,进而C-S-H凝胶发生脱钙现象,Ca~(2+)与CO_3~(2-)结合生成稳定的CaCO_3,碳酸化产物500~850℃失重率达35.26%,有利于碳酸化反应的进行。  相似文献   

8.
采用粉末冶金法制备多壁碳纳米管(MWCNTs)增强铝(Al)基复合材料(MWCNTs/Al),研究MWCNTs的特征对MWCNTs/Al复合材料显微组织结构及性能的影响。采用X线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和拉伸实验对复合材料进行性能测试。结果表明:经过球磨混合的复合粉末中没有碳化铝(Al_4C_3)相,通过烧结和热挤压后出现Al_4C_3相。与长碳纳米管(L-MWCNTs)和短碳纳米管(S-MWCNTs)相比,镀镍碳纳米管(Ni-MWCNTs)在复合材料中分散更均匀,与Al基体的结合性更好,所得到的复合材料硬度和抗拉强度较高,抗拉强度可达到247 MPa,是纯Al的4倍。  相似文献   

9.
以SiC_p/Al复合粉末为研究对象,开展不同变形程度的等径角挤扭(ECAPT)变形实验,研究等径角挤扭对SiC_p/Al复合材料微观结构及力学性能的影响。利用OM、XRD、TEM和XPS以及排水测密度法、力学性能测试等手段分析不同试样的微观组织和力学性能的演变规律以及界面反应情况。结果表明:随变形道次增加,Si C团聚现象得到改善,微晶尺寸逐渐减小,位错密度逐渐增大;材料界面处发生保护反应生成Al_2O_3,且反应程度随变形道次增加而加剧,未发生有害的界面反应,无Al_4C_3脆性相生成。4道次变形后材料的显微硬度和屈服强度相比1道次分别提高10%和16%。  相似文献   

10.
采用XRD和TG-DTA方法对CeO2 -B4C-C体系的高温化学反应及相组成进行了研究.结果表明,650℃~910℃时, CeO2同B4C生成CeBO3、CeBC和B;1270℃~1309℃时, CeO2同B4C生成CeBO3、B和CeB4,以及CeBO3、CeBC和B4C生成CeB4;在以上两个温度区间内,碳的作用很小.1317℃~1370℃时,CeBO3、B4C和C生成CeB4和B;1371℃~1420℃时,CeO2、B4C和C生成CeB6和CO;在以上两个温度区间内,碳的作用显著. 1460℃的高温下,CeB4和B进一步反应生成CeB6,此时CeB6相占主要地位,其生成率随反应时间延长而增加.  相似文献   

11.
以熟焦、炭纤维、B_4C、SiC、Si、TiO_2和TiC为原料、采用原位合成及热压技术研究了不同TiO_2和TiC含量对多组分碳/陶复合材料的组成、结构和性能的影响。在烧结过程中TiO_2或TiC与B_4C反应原位生成TiB_2,Si和TiO_2分别与C反应生成SiC和TiC,这些陶瓷相的生成对提高碳/陶复合材料的力学性能有显著作用。加入TiO_2比TiC能使碳/陶复合材料在较低的温度下实现致密化烧结,获得了抗弯强度达430 MPa的碳/陶复合材料。  相似文献   

12.
采用真空-压力熔渗工艺制备了B4C/Al金属陶瓷复合材料.由于真空-压力熔渗工艺可以在较低的熔渗温度(低于1100℃)下制备B4C/Al复合材料,避免了高温下B4C与金属Al反应产生其它脆性中间相,可以制备材料相对密度>98%,抗弯强度为360~420 MPa,断裂韧度为10~11 MPa·m1/2的高性能B4C/Al金属陶瓷复合材料.  相似文献   

13.
采用凝胶注模成形工艺制备Al2O3/B4C芯块,研究其真空烧结性能.通过热分析仪、扫描电镜(SEM)、X射线衍射(XRD),考察了Al2O3/B4C复合材料DTA、结构、形貌和相态.结果表明:在1 600℃以上Al2O3与B4C反应,生成Al8B2O15等低熔点化合物,有利于提高Al2O3/B4C芯块致密性,但同时会产...  相似文献   

14.
微电子封装用SiC_p/Al复合材料的中温钎焊   总被引:1,自引:0,他引:1  
选用Al-Ag-Cu和Al-Si-Cu-Ni两种钎料,分析钎料的熔化特性和微观组织,并分别用于钎焊化学镀Ni后的SiCp/Al复合材料,研究其结合机理。结果表明,Al-Ag-Cu和Al-Si-Cu-Ni都具有很好的熔化特性,熔点均在520~530℃之间,具有很窄的熔化温度区间。用这2种钎料钎焊化学镀Ni后的SiCp/Al复合材料时,Ni镀层与Al基体发生反应生成Al3Ni和Al3Ni2化合物层,同时与钎料发生界面反应生成Al-Ni-Cu和Al-Ag-Cu等化合物,从而保证钎焊接头牢固的连接。钎料中的Ag和Cu元素穿过Ni(P)镀层,扩散到Al基体中,形成Al2Cu、Ag2Al等金属间化合物。  相似文献   

15.
研究了Al-Ti O_2-B_2O_3系粉末在无过量Al以及过量Al为0%,5%,10%,15%,20%,25%(质量分数,下同)时,球磨时间对机械合金化及燃烧反应的影响规律,计算了不同成分时反应体系的理论绝热温度,对球磨后的粉末进行了X射线衍射(XRD)、差示扫描量热法(DSC)、扫描电镜(SEM)测试分析。结果表明:在球磨过程中,无过量Al以及过量Al为5%,10%,15%时,Al还原Ti O_2反应的理论绝热温度低于1800 K,Al还原B_2O_3反应远高于1800 K,反应产生的热量促使Ti O_2还原反应发生,生成Al_2O_3和Ti B_2。过量Al为20%,25%时,Al还原Ti O_2和B_2O_3反应的理论绝热温度都低于1800K这一临界反应温度,不能发生化学反应。随着球磨时间的增加,粉末的表面能、晶格畸变能、位错能以及晶界能增加,扩散通道缩短,促使自蔓延化学反应的点火温度下降,从未球磨的1000℃以上下降到600℃左右。在球磨过程中,粉末颗粒尺寸首先增加,超过一定时间后,粉末颗粒尺寸减小,发生化学反应后,粉末颗粒尺寸明显减小,达到微纳米级。  相似文献   

16.
Al_2O_3/Cu复合材料的软化温度是材料耐热性能的重要指标。本实验采用机械合金化法和放电等离子烧结法制备不同组分的Al_2O_3/Cu复合材料,并对Al_2O_3/Cu复合材料进行不同温度梯度的加热保温试验,探讨了Al_2O_3含量及其分散性对材料本身软化温度的影响,得到了性能优异的Al_2O_3/Cu复合材料,其软化温度区间为700~750℃,其导电率为74%IACS,硬度为142 HV。  相似文献   

17.
原位生成CeB_6颗粒增韧B_4C/Al复合材料的研究   总被引:1,自引:1,他引:0  
采用无压浸渗法制备了B_4C-CeB_6/Al复合材料, 并对其进行了力学性能测试. B_4C-CeB_6/Al复合材料的密度、抗弯强度、断裂韧性相比单一B4C材料都有很大的提高, 而硬度有所降低. 其抗弯强度值为409.47 Mpa, 比单一碳化硼提高了39.32%; 断裂韧性值6.58 Mpa·m~(1/2), 比单一碳化硼提高了78.80%. B_4C-CeB_6/Al复合材料的抗弯强度和断裂韧性的提高主要有两方面的作用: 一是由于原位生成的CeB_6和B_4C颗粒之间热膨胀系数的不匹配产生残余应力, 从而引起裂纹偏转起到增韧的效果; 二是渗入金属铝的延展性在复合材料中得以体现, 使复合材料韧性增加.  相似文献   

18.
采用真空热压法在不同温度下制备了体积分数为12%的WCp/2024Al复合材料,试验中所用WC原始粉末的平均粒径分别为2μm和8μm.利用XRD、SEM、EDS等方法对增强颗粒与基体金属之间的界面反应进行了研究.结果表明,界面反应的主要产物为WAl12,但是当制备温度较高时,界面反应产物中出现少量Al5W,并且WCp(2μm)/2024Al复合材料界面反应的起始温度低于WCp(8μm)/2024Al复合材料.硬度测试结果表明,界面反应发生后,复合材料的硬度提高,最高比例达50%.  相似文献   

19.
采用粉末冶金快速热压法制备B_4C/Al中子吸收材料,对其进行T6态热处理,通过对材料的密度、硬度与抗弯强度等性能的测试以及材料微观组织、物相组成和弯曲断口形貌的观察与分析,研究成形压力、热压压力与温度以及B_4C颗粒含量的影响。结果表明,B_4C/Al复合材料的物相组成为Al和B_4C;B_4C颗粒均匀地镶嵌在基体中,颗粒与基体结合紧密。材料密度随压制压力增加而增大,随B_4C含量增加而降低,在热压压力和温度共同作用下,铝合金液充分填充压坯孔隙从而实现高致密。当B_4C的质量分数为30%时,在150 MPa预成形压力下压制、530℃/10 MPa条件下热压后所得B_4C/Al复合材料的相对密度最高,达到99.87%,断裂方式为韧性断裂。经T6态热处理后,硬度HB和抗弯强度均提高,分别达到123.49和394.117 MPa,断裂方式转变为脆性断裂。  相似文献   

20.
采用热爆合成技术制备TiC/Ni3Al复合材料,通过DSC,XRD,SEM等分析手段对Ti-C-3Ni-Al体系热爆反应过程及复合材料进行了研究。结果表明:Ni,Al在反应生成Ni3Al的同时引发了Ti和C之间生成TiC的反应,形成了纯净的TiC/Ni3Al复合产物,Ti-C-3Ni-Al体系的反应温度与TiC含量无关。热爆产物的微观组织形貌跟体系成分及热爆温度有关,TiC含量愈高,TiC颗粒粒度愈大,热爆产物中微观孔隙愈少;TiC颗粒的粒度随热爆温度的升高而增大,形状从近球形发育成多边形。热爆产物的致密度随着TiC含量增加及热爆温度的升高均表现出先增加后减小的变化趋势。当TiC含量为35%左右,热爆温度为750℃左右时,产物致密度最高。不同成分复合材料的显微硬度不同,TiC含量增加,复合材料显微硬度显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号