首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 438 毫秒
1.
采用轧制方法制备Cu/Mo/Cu复合材料,利用金相显微镜、扫描电镜和电子拉伸机等研究Cu/Mo/Cu复合材料的界面结构、断裂特点和工艺参数对结合强度的影响。结果表明:轧制前经(750℃,8 min)热处理,道次变形量为55%,复合材料的界面结合紧密,最大剪切强度为77 MPa;钼层金属显微组织呈扁平纤维状,组织较为均匀,铜层金属的晶粒呈等轴状,由界面至表面晶粒逐渐增大,且分布很不均匀;复合机制为典型的裂口结合和机械啮合。  相似文献   

2.
采用熔覆法制备Cu/Mo/Cu复合材料,利用金相显微镜对Cu/Mo/Cu复合材料的界面结构、显微组织进行研究,并通过扫描电镜分析了熔覆+轧制材料的断裂特点和界面结合特性。结果表明:熔覆复合界面平直且结合紧密;熔覆后钼层靠近界面的晶粒发生静态回复和再结晶,分布均匀呈等轴状,钼层中间位置的晶粒沿水平方向保持了原有的扁平状,铜层晶粒为粗大晶粒,大小不一且分布不均匀;铜层为韧性断裂,钼层发生分层断裂现象;剥离过程中材料沿着界面附近分层严重的钼层开裂,复合界面结合紧密。  相似文献   

3.
电子封装用Cu/Mo/Cu复合材料的工艺研究   总被引:1,自引:0,他引:1  
研究了浸涂助复剂(铝基合金)和室温轧制工艺对Cu/Mo/Cu复合界面结合强度的影响,简述了Cu/Mo/Cu复合板室温轧制成形工艺过程,详细分析了表面和界面清理、初道次轧制临界变形率及热处理工艺等因素对复合板结合强度的影响。实验结果得出,钼板浸涂Al—Mn—Zn—Sn合金助复剂后的热处理温度为800~850℃;初道次轧制变形率为45%最佳;复合轧制后合适的退火工艺为450℃,保温60min。  相似文献   

4.
轧制复合电缆用Cu/Al复合材料变形规律研究   总被引:2,自引:1,他引:1  
采用三步法复合工艺制备了电缆用Cu/Al复合板,分析了冷轧复合过程中Cu/Al复合板变形区的特点,研究了Cu层与Al层厚度比为1∶4时各组元压下率与总压下率的关系.将Cu/Al双金属变形区分为3个区,建立了基于原始坯料层厚比条件下的轧制复合Cu/Al复合板厚度模型.  相似文献   

5.
本工作通过抗剪切强度测试、剪切断面显微观察和有限元仿真等手段对不同Cu/Al层厚比下波纹辊轧制(CRB)Cu/Al复合板的金属的变形行为和界面结合性能进行了研究。结果发现,CRB过程中界面处形成了局部强正应力和多个“搓轧区”,促进了复合板的塑性变形和界面结合。增大Cu/Al层厚比可提升Cu层的变形率和波谷界面处的正应力,有利于降低Cu/Al复合板的翘曲程度,并增强界面的整体结合性能。当层厚比从2:10增加到2:4时,界面抗剪切强度从40.39MPa上升到47.24 MPa,但界面抗剪切强度的波动逐渐增大。  相似文献   

6.
利用Ag-28Cu合金钎焊复合制备Ag/Cu复合材料,经轧制加工成复合带材。研究轧制变形和扩散退火对复合界面形貌、界面组织和性能的影响,以及界面元素扩散特征。结果表明,随着轧制变形量增加,Cu、Ag-28Cu和Ag发生协调变形,复合界面由波浪形,转变成锯齿状,最后Cu层整体向Ag层倾斜。随着加工率增加,Cu层硬度逐渐降低,Ag-28Cu层硬度显著升高,Ag层硬度不变。随着退火温度增加,界面组织逐渐长大粗化,复合层宽度增加。界面原子扩散行为主要是Cu原子向Ag中发生扩散,退火温度增加时,Ag-28Cu层中Cu原子向Ag侧逐渐减少,Ag层中的Cu原子含量增加,Cu和Ag层硬度没有发生变化,而Ag-28Cu层硬度逐渐降低。  相似文献   

7.
通过室温冷轧制备出了1060Al/AlSn20Cu/1060Al/钢多层复合板材,并探索了轧制压下量对复合板微观组织和力学性能的影响。利用扫描电子显微镜和电子背散射衍射(EBSD)对复合板微观组织进行表征,通过拉伸试验测量了复合板力学性能。复合板的初始轧制压下量为17%,最小稳定压下量为40%。结果表明,随着轧制压下量的增加,铝合金层中锡相和钢中组织沿轧制方向被拉长,但是纯铝层呈现出等轴晶。随着轧制压下量的增大,复合板抗拉伸强度和界面结合强度增加,而延伸率下降。AlSn20Cu合金层的断裂主要跟其中的锡相有关。  相似文献   

8.
基于复合板结合强度计算模型,用数值模拟和实验研究了轧制速度对铜/铝复合板结合强度的影响。结果表明,随着轧制速度的增加,组元金属的应变均小幅度增加,变形区正应力峰值则基本保持不变。轧制速度为125 mm/s时,铜铝结合界面上节点速度的一致性较好,在不考虑金属复合时间对结合强度影响时,轧制速度125 mm/s最有利于组元金属的结合。随着轧制速度的增加,铜/铝复合板的结合强度先增大后减小,且轧制速度为125 mm/s时,结合强度达到最高。  相似文献   

9.
采用无氧铜与电工纯铁为原材料运用冷轧复合工艺生产Cu/Fe/Cu复合件,分析了轧制压下率、退火温度对轧合件力学性能的影响,并运用金相显微镜、扫描电镜分析了组元的界面结合情况.结果表明,采用75%、80%压下率的冷轧工艺,且轧后采用700℃×30 min的退火工艺,可获得轧合件最佳的综合力学性能,其抗拉强度达385MPa,抗剪切强度达358MPa.  相似文献   

10.
为满足弹药智能制造和轻量化需求,采用冷轧法制备了厚度比分别为1∶1、1∶5和1∶9的Cu/Al复合板,研究厚度比对复合板冲压性能与界面结合强度的影响。通过单轴拉伸试验获得了材料的基本力学性能和各向异性参数,以类拉深工艺的冲杯试验和杯突试验定量表征Cu/Al复合板的冲压性能。进一步研究了退火温度对复合板力学各向异性行为和界面结合强度的影响,以调控复合板的冲压性能。结果表明,3种Cu/Al复合板冲压成形件的质量良好,铜层厚度比越高,复合板的冲压性能越好;经过500℃/120 min退火后,板材的力学各向异性参数达到最低的0.027,冲压成形性能明显改善;随着退火温度的升高,扩散层的厚度逐渐变大,界面结合强度先升高后降低。研究结果可为制备具有优良冲压性能的Cu/Al复合板提供理论指导。  相似文献   

11.
The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion (CTE) of Cu/Mo/Cu clad sheets was established successfully. The results show that the deformation of Cu and Mo layers was gradually coherent with an increase in rolling reduction and temperature and excellent interface bonding was achieved under the condition of a large rolling reduction. The development of the microstructure and texture through the thickness of Cu and Mo layers was inhomogeneous. This phenomenon can be attributed to the friction between the roller and sheet surface and the uncoordinated deformation between Cu and Mo. The tensile strength of the clad sheets increased with increasing rolling reduction and the elongation was gradually decreased. The CTE of Cu/Mo/Cu clad sheets was related to the volume fraction of Mo. The finite element method can simulate the deformation and stress distribution during the thermal expansion process. The simulation result indicates that the terminal face of the clad sheets was sunken inward.  相似文献   

12.
采用等辊径、等辊速冷轧复合技术制备了AgNi10/Cu/Fe三层复合材料,对其界面结合机制进行了研究。复合前对三层材料分别进行再结晶退火,获得均匀的原始组织及相近的硬度,并用钢丝刷清理复合面。利用扫描电镜和能谱仪对复合材料的剥离面进行了形貌观察和成分分析。结果发现,AgNi10/Cu/Fe的界面结合机制主要是裂口机制。各层复合面的硬化层在轧制时开裂,其中较软金属(AgNi10和Cu)从裂口中挤出,与硬金属(Cu和Fe)产生结合;其结合强度分别大于AgNi10和Cu的基体强度。  相似文献   

13.
A plastic deformation approach to Mo matrix composites remains a longstanding challenge in the processing of refractory metal. Toward this objective, we explored a selective fabrication of the diffusion-rolling procedure. With diffusion bonding initially, a primary sandwich sheet was achieved. The interfacial strength of Mo/Cu was enhanced by the plastic deformation after rolling. Ultrathin Cu–Mo–Cu sheet and Mo–Cu alloy sheet with Cu matrix containing distributed uniformly fibrous Mo were fabricated. HR-TEM analysis revealed that atomic-level interdiffusion of Mo and Cu was present at the interface. Therefore, it is concluded that the diffusion-rolling procedure can be potentially employed as a joining method for the fabrication of Mo–Cu composites.  相似文献   

14.
借助于显微硬度计、SED和EDS等手段,从显微硬度、结合状态及元素分布等方面对45钢/铜合金双金属界面特征进行了分析.结果表明,45钢与铜合金之间的结合区无任何冶金缺陷,Fe、Cu互相扩散,呈冶金结合状态,结合区宽度10μm.铜合金组织中的Pb分布均匀,在减摩性和耐磨性方面获得良好的综合性能.同时,Ni作为隔离金属层向两侧进行了扩散,在45钢/铜合金的结合中取得了很好的效果.  相似文献   

15.
利用电阻压焊进行Cu/Al合金异种材料复合管的焊接试验,分析了接头微观组织与界面主要元素的分布特征。结果表明,接头中Cu元素大量扩散溶入Al基体中,形成有害的CuAl2金属间化合物,但是,电阻压焊过程中外加顶锻力使结合区产生剧烈塑性变形,能破碎粗大CuAl2金属间化合物并细化接头熔合区晶粒,有利于改善接头的结合性能,获得优质焊接接头。  相似文献   

16.
Ti/Cu/Ti laminated composites were fabricated by corrugated rolling (CR) and flat rolling (FR) method. Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron microscopy, numerical simulation methods, peel and tensile examinations. The effect of CR and FR was comparatively analyzed. The results showed that the CR and FR laminated composites exhibited different effective plastic strain distributions of the Ti layer and Cu layer at the interface. The recrystallization texture, prismatic texture and pyramidal texture were developed in the Ti layer by CR, while the R-Goss texture and shear texture were developed in the Cu layer by CR. The typical deformation texture components were developed in the Ti layer and Cu layer of FR laminated composites. The CR laminated composites had higher bond strength, tensile strength and ductility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号