首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 281 毫秒
1.
岩石节理直剪试验颗粒流宏细观分析   总被引:4,自引:2,他引:2  
 基于颗粒流理论和PFC程序,在解决建模过程中悬浮颗粒的消除、恒定法向荷载伺服机制的施加、拟静力加载状态的选取等问题后,较为完善地实现岩石节理PFC数值直剪试验,并分别从宏观和细观角度深入探讨节理在直剪试验过程中的力学演化特征和破坏机制。结合已有的节理直剪试验成果,进行室内试验和计算结果的对比分析,验证计算方法的可靠性。研究成果如下:(1) 随恒定法向荷载的增大,剪切应力及其峰值时刻的剪切位移增大,节理面上黏结破坏颗粒增多,而剪切阻抗和节理剪胀效应却降低;(2) 随剪切位移的增加,节理面上粒间法向接触数不断减少,接触矢量方向逐渐向剪切荷载施加方向偏转,而粒间接触压力不断增大,裂纹不断沿节理面附近产生,破裂频数在剪切应力达到峰值时最为强烈;(3) 数值试验得到的剪切阻抗值普遍高于试验值,但减小模型颗粒半径可有效降低计算剪切阻抗值。室内试验和计算结果对比分析表明,新提出的颗粒流计算方法非常适用于岩石节理直剪试验的数值模拟,可为室内节理直剪试验和PFC节理模型细观力学参数选取的深入研究提供有益的参考。  相似文献   

2.
节理表面形貌和接触状态对节理剪切力学性质有重要的影响。用砂浆材料的单轴压缩试验和光滑节理直剪试验得到材料和光滑节理的宏观力学性质参数,对颗粒流数值模拟的节理细观力学性质参数进行标定。用颗粒流离散元数值软件(PFC2D)构建人工粗糙节理表面形貌,对不同表面形貌的节理在不同接触状态下的剪切强度性质进行颗粒流直剪数值模拟试验,获得其峰值剪切强度。同时进行人工材料节理直剪试验,与颗粒流直剪数值模拟试验结果进行对比分析,数值试验与直剪试验结果吻合较好,验证了颗粒流直剪数值模拟试验与直剪试验具有同等的精度,可以作为各种表面形貌的节理在不同法向应力水平下抗剪强度研究的一种补充方法,以解决节理直剪试验中表面形貌损失对其剪切强度的影响,也可以在少量节理直剪试验的基础上,预估相同形貌的节理在不同接触状态下的剪切强度性质,同时还可以在现场测定不同粗糙度的节理表面形貌,预估其在不同接触状态、不同法向应力下的剪切力学性质。从而解决节理直剪试验中在相同形貌节理试件取样和制备困难的问题,且具有经济、方便、快捷、可重复性强等特点。  相似文献   

3.
 采用满足正态分布的随机函数,构造岩石节理剖面的形貌,为研究受剪岩石节理的细观剪切特性和宏观剪胀效应提供研究基础。利用UDEC软件,基于CY微段节理模型,开发随机形貌岩石节理直剪特性的数值分析程序,采用CY微段节理模型的细观剪切力学参数,探讨微段节理的细观剪切特性和岩石节理的宏观剪切响应,提出节理抗剪强度参数与节理面粗糙度系数JRC之间的拟合关系。得到如下结论:JRC越大,岩石节理的宏观剪切峰值强度和剪胀角随之增大,而峰值剪切位移与JRC成反变化关系;随着法向应力的增加,节理的剪胀效应逐渐减弱;这些数值结论得到模型实验的充分验证。微段节理的细观切向爬坡和剪胀效应是岩石节理产生宏观剪胀的细观力学机制。通过对随机形貌岩石节理的宏观剪胀数值曲线性态进行分析,提出能考虑节理粗糙度JRC和法向应力影响的非线性剪胀本构模型,该模型较好描述了受剪岩石节理的剪缩段和剪胀段。  相似文献   

4.
为研究常法向应力下岩石节理的剪切强度特性,采用劈裂法制取不规则砂岩、花岗岩节理试样,在借助三维形貌扫描仪获取岩石节理形貌参数后,采用RDS-200岩石节理剪切试验系统,开展不同法向应力下岩石节理直剪试验,基于峰值剪胀角与法向应力、节理形貌和节理抗变形能力的关系,提出不规则岩石节理剪切强度经验公式.研究结果表明:整体上峰...  相似文献   

5.
通过引入光滑节理模型,可真实地反映剪切过程中节理岩体力学行为。采用颗粒流软件,从细观角度研究了不同连通率条件下剪切过程中裂纹扩展规律和剪裂面应力分布特征。研究结果表明:颗粒流数值模拟软件可以较好地再现和重复节理岩体直剪试验;细观数值模拟分析可得到剪切过程节理岩体剪切面应力分布情况;随连通率增大,节理岩体对应峰值强度减小,产生张拉裂纹比例降低;在剪切过程中剪应力不断变化,试样受到的水平剪切力主要由中间岩桥承担,两边节理只承担小部分剪力。  相似文献   

6.
粗糙节理剪切性质的颗粒流数值模拟   总被引:2,自引:2,他引:0  
 在二维颗粒流程序PFC2D中生成粗糙节理剖面并模拟其剪切性质。通过数值直剪试验,从细观角度观察节理的宏观破坏过程。作为模型试验的一种补充,可以观测到粗糙表面微凸体的剪切破坏及微裂隙发育的情况。宏观剪切区域的产生主要是由细观剪裂纹的累积形成的,剪切破坏区域集中在爬坡效应显著的位置,即剪切应力集中的区域,剪切过程中形成的剪裂纹的数量在出现剪切峰值应力后显著增加,此时粗糙节理面的破坏最为显著。颗粒流数值试验能较好地再现模型试验的结果,采用PFC2D数值试验能部分替代真实岩石试样的模型试验,将其作为一种预测真实岩石节理抗剪强度的手段,从而解决天然粗糙节理形貌难以重复的问题。  相似文献   

7.
在伺服控制剪切加载系统下对不共面类岩石断续节理试件进行正向、反向直剪试验,研究直剪下不共面断续节理的岩桥破断机理和剪切规律,试验研究发现,直剪作用下不共面断续节理岩桥破坏过程具有明显的阶段性,经历线弹性阶段、裂纹起裂扩展阶段、岩桥断裂贯通阶段、剪切面爬坡咬合阶段和残余摩擦阶段5个阶段,正向剪切下岩桥呈齿形破断面,反向剪切作用下岩桥产生沿直剪方向贯通的带形破断面,与正向剪切相比,反向剪切下节理的初裂抗剪强度和峰值抗剪强度较大,裂纹倾角、法向应力和相邻节理搭接比例是影响试件初裂抗剪强度和峰值抗剪强度的主要因素。采用FLAC3D对正向、反向直剪作用下不共面断续节理的岩桥破断、剪切破断面的形成过程进行数值试验,数值试验结果和类岩石直剪试件的试验结果基本吻合,数值试验揭示了直剪作用下不共面断续节理岩桥的拉裂破坏和破断面的剪切屈服机理。  相似文献   

8.
采用颗粒流软件PFC2D实现含有不同岩桥倾角的预制双裂纹材料在单轴压缩作用下裂纹扩展贯通过程,并利用函数模块追踪裂纹扩展过程和微裂纹数量。数值结果表明:在单轴压缩作用下随着岩桥倾角增大,岩桥区域裂纹贯通模式由张拉型(≤68°)逐渐演化为拉剪复合型(=90°和113°)和剪切型(=135°);试件峰值强度逐渐降低;并认为宏观的次生剪切带主要由张拉型微裂纹和少量剪切型微裂纹组成。利用室内模型试验对数值结果进行验证,结果表明颗粒流程序能够很好地模拟裂纹贯通过程。  相似文献   

9.
 为研究粗糙节理在剪切过程中的渗流规律,首先,采用Barton剪胀模型分析节理在剪切过程中的剪胀效应,计算节理在不同剪切位移下的剪胀位移,采用Brown-Scholz(B-S)理论模型分析法向应力作用下的节理闭合变形;通过初始隙宽、法向闭合变形和剪胀位移建立剪切过程中的节理隙宽与法向应力和剪切位移之间的关系,在此基础上得到剪切过程中的节理渗流计算公式;然后,在对节理试件进行渗流试验的基础上,分别采用基于Barton剪胀模型的节理渗流计算公式和Barton经验公式计算通过节理试件的理论渗流流量,并将预测结果与实测值进行比较,比较结果表明,基于Barton剪胀模型的节理渗流计算公式的预测结果与实测值较为一致,而Barton经验公式预测值与实测值偏差较大,从而验证了该公式在计算节理剪切过程中的渗流情况的正确性。  相似文献   

10.
 利用高强石膏材料浇注含不同一阶和二阶起伏度的岩体节理模拟试件,通过节理在不同一阶和二阶起伏度及法向应力下的常法向荷载剪切试验,对其剪切强度特性进行研究,分析一阶和二阶起伏度及法向应力对剪切强度的影响规律。试验结果表明:含二阶起伏体节理试件的剪切强度–剪切位移曲线有多个峰值剪应力出现,只含一阶起伏体节理的峰值剪应力不明显;节理剪切强度随着一阶和二阶起伏度及法向应力的增大而增大;随着二阶起伏度与一阶起伏度比值的增大,剪切强度先增大后降低。对试验数据进行回归分析,提出能反映一阶和二阶起伏度及法向应力影响的剪切强度经验公式。  相似文献   

11.
节理剪切试验及其表面形貌特征变化分析   总被引:6,自引:0,他引:6  
 节理表面形貌是影响节理抗剪强度的重要因素之一。采用试验方法研究岩石节理表面形貌与其抗剪强度之间的关系;运用RYL–600岩石剪切流变仪对天然岩石节理在不同法向应力下进行剪切试验,得到不同法向应力下节理的抗剪强度曲线,并运用TALYSURF CLI 2000扫描仪将节理表面在每次剪切前后进行高精度激光扫描测试,得到岩石节理表面的三维扫描图。分析节理在不同法向应力作用下的抗剪强度与节理表面形貌变化的关系,计算岩石节理表面轮廓平均角的加权平均值 ,发现随着法向应力的增加,节理峰值抗剪强度增加,随着剪切次数增加, 呈减小趋势。说明节理的抗剪强度与法向应力和节理表面形貌特征参数 有关。  相似文献   

12.
 基于岩桥力学性质弱化机制,采用带伺服系统的直剪试验仪进行试验,在5级法向应力下,对3种含齿形节理的非贯通节理岩体进行直剪试验,研究非贯通节理岩体的强度特性和变形特性。在较低的法向应力下,含起伏角较低齿形节理面的非贯通节理岩体出现破坏模式I(张拉破坏模式)。在较高的法向应力下,含起伏角较高齿形节理面的非贯通节理岩体可能出现破坏模式II(先张拉后剪切破坏模式)。相同齿形节理面形貌的非贯通节理岩体,随着法向应力增大,峰值切向位移增大,抗剪强度增大。在相同的法向应力下,随着齿形节理面起伏角增大,非贯通节理岩体的峰值切向位移减小,抗剪强度增大。非贯通节理岩体黏聚力按Jennings方法计算值大于按试验拟合值;节理面较粗糙非贯通节理岩体内摩擦角按Jennings方法计算值大于按试验拟合值。  相似文献   

13.
非连续变形分析(DDA)是计算离散可变形块体系统力学响应的数值计算方法,其在连续岩体开裂破坏模拟中的应用也已得到研究。在以往的预离散子块体DDA开裂模拟方法中,通过采用虚拟节理对子块体进行粘结以模拟连续体的变形,进而根据虚拟节理面上的块间接触力判断沿预设节理面的拉伸或剪切破坏。该算法能够较好的模拟岩体的开裂路径和破坏形态,但受预设虚拟节理面方向对块间接触力大小的影响,由此得到的岩石开裂强度与实际之间可能产生较大差异。本研究不再根据块间接触力进行开裂判断,而改进为根据邻近子块体的应力状态进行开裂判断,并仍假定裂纹沿虚拟节理面产生。用新的DDA程序对压缩载荷作用下圆盘试件的拉伸开裂破坏和方形试件的剪切开裂破坏进行了模拟。算例表明,改进后的开裂算法具有高的开裂计算准确性,并大大减小了预设虚拟节理分布对开裂破坏强度及破坏路径模拟结果的影响。  相似文献   

14.
 岩体中大量存在的各种不连续面,如断层、节理、裂隙等,是影响岩体工程力学特性的最重要的因素,因此,对岩体中广泛存在的结构面工程特性的研究具有重要的工程意义。在动力显式方法的基础上,对规则锯齿状的结构面进行剪切破坏特征进行分析,并进行室内模型试验。对数值模拟与模型试验的结果进行对比分析,得出归一化的锯齿状结构面在不同法向应力作用下的剪切破坏力学行为及重要剪切破坏规律,并验证了利用动力显式方法进行节理岩体工程力学特性研究的适应性。研究表明:在一定法向应力水平下,规则锯齿状结构面剪切破坏是随着剪切位移的增长而不断扩展,主要表现为结构面上的等效塑性应变分布范围与深度的不断扩大,最后达到纯摩擦的残余强度状态;等效塑性应变的扩展规律一般是在剪切方向上从试样两侧逐渐向中间扩展,对于下侧结构面而言,在达到剪切应力峰值之前,剪切应力主要分布在试样中相背剪切速度方向的一侧,在剪切峰值之后,随着结构面破坏范围不断增大,剪切应力分布趋于均匀;当正应力不断增大时,结构面发生爬坡滑移越来越困难,结构面破坏深度不断增大,峰值剪应力所对应的破坏模式逐渐变为直接剪断锯齿破坏。  相似文献   

15.
 对于锦屏二级引水隧洞,脆性岩体破裂损伤发展的时间效应已从现场围岩破坏情况及多种监测仪器长期监测数据中得到反映,成为影响引水隧洞长期稳定性的控制因素。为系统研究这一问题,针对锦屏二级引水隧洞沿线所占比例最大的岩层之一--白山组大理岩,在论述岩体破裂扩展时间效应的现场体现的基础上,进行破裂时效室内试验,得到破裂时效拟合式和临界驱动应力比;继而采用CPM模型建立可以考虑脆–延–塑转换特征的白山组大理岩数值试样,标定其微观参数,并进行室内破裂扩展试验的PFC模拟;最后,首次对工程尺度的引水隧洞进行破裂扩展时效的PFC模拟,研究不同岩性、不同埋深下,在100 a运行期内引水隧洞围岩的破裂情况。结果表明,室内试验中破坏时间的增加和荷载的降低呈现出较明显的指数非线性关系,且亚临界裂纹开始扩展,具有一个门槛值(定义为临界驱动应力比),对于白山组大理岩此应力比为0.492。采用CPM模型标定的PFC短期细观参数可较好反映锦屏白山组大理岩试样的三轴压缩应力–应变曲线及屈服破坏特征表现出的明显围压相关性,低围压下裂纹数目随围压增加明显,高围压下增加速度减缓,且拉裂纹在高围压下数目不再随围压增高而增加。数值试验中发现轴向应变和裂纹数目发展均表现出明显的蠕变三阶段特征。随着驱动应力比减少,由蠕变产生的应变量值是增加的。侵蚀裂纹的发展也符合蠕变三阶段特征,驱动应力比越小,侵蚀裂纹数目基本线性增加,但侵蚀裂纹发展速率呈指数减少。在开挖完成100 a后,II类大理岩岩体中引水隧洞的破裂区最大范围为2.1~3.1 m,III类大理岩为3.3~4.5 m,引水隧洞的长期稳定性可以得到较好保障。  相似文献   

16.
 工程上常采用不随应力变化的岩石结构面抗剪强度参数,不能反映结构面摩擦角应力效应的变化规律。为研究结构面摩擦角与法向应力的相关度,首先对中砂、水泥、硅粉、非引气型萘系减水剂等原材料的配比进行研究,获得与天然钙质板岩物理力学特性相类似的岩石模型材料,然后采用研发的结构面制作模具及其制备工艺制作10组具有不同表面起伏度和粗糙度的结构面,并利用自制的高精度岩石结构面直剪仪对系列法向应力下的结构面摩擦角进行直剪试验研究和数据统计分析,结果表明:结构面峰值摩擦角及其变化率均随法向应力的增加而降低,而不是通常认为的峰值摩擦角为定值;结构面残余摩擦角随法向应力的变化并不是很明显;具有不同起伏程度和粗糙度系数的模型结构面在相同法向应力下的峰值摩擦角也有差异;结构面峰值摩擦角应力效应和JRC-JCS (JRC为粗糙度系数,JCS为壁岩强度)准则中所确定的峰值摩擦角变化规律相一致,而且粗糙度系数越大结构面峰值摩擦角的应力效应越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号