首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
以低活性钨尾矿为主要原料制备高活性的地聚合物反应前驱物,在直接加水条件下合成地聚合物试样。结果表明,助剂种类对加水一体化合成的地聚合物的抗压强度影响显著,地聚合物反应前驱物制备的最佳试验条件为:助剂种类为氢氧化钾,煅烧时间1 h,粉末硅酸钠掺量15%,在此条件下加水一体化合成的地聚合物7 d抗压强度达18.78 MPa。此外,研究认为高温湿气养护不利于该条件下所制成的地聚合物强度发展。  相似文献   

2.
孙双月 《金属矿山》2023,(2):247-253
地聚合物是一种新型的无机聚合物胶凝材料。为了便于现场浇筑以及固体废物资源化利用,对室温条件下用矿渣和粉煤灰来制备地聚合物胶凝材料进行了研究。矿渣和粉煤灰以2∶1混合后作为硅铝质原料,通过复合碱激发剂来激活,采用不同制备工艺、室温养护来制备地聚合物胶凝材料。探索了不同制备工艺、复合碱激发剂掺量对地聚合物抗压强度的影响,并对地聚合物物相组成、微观形貌和红外吸收性质进行了分析。结果表明:在地聚合物制备过程中,将硅铝质原料与氢氧化钠进行混磨,有利于硅铝质原料的激活;复合碱激发剂的最佳掺量为16%时,3 d龄期试样的抗压强度可达到16.1 MPa,28 d龄期达到33.6 MPa。最终试样结构类似于混凝土,由地聚合物凝胶和未反应硅铝质原料为骨料组成,生成的地聚合物凝胶将未反应的硅铝质原料颗粒黏结为一整体,其结构越致密抗压强度越高。  相似文献   

3.
将高岭土和氢氧化钠固体的热活化产物与钢渣混合、水化、压制,制备了一种较高强度的钢渣-高岭土基地质聚合物材料。采用XRD、FTIR和SEM测试方法对原料和合成的地质聚合物材料的表面键合、物相及微观结构的变化进行了分析。质量分数为5%的高岭土碱热活化物料与95%的钢渣粉末制备的地质聚合物材料,其养护3、7和28 d的试块抗压强度分别为20、30和28.9 MPa,达到了非承重墙体建筑材料MU20、MU25和MU30的强度等级标准。表面键合变化表明,反应生成了Si(Al)-O三维网络结构的地质聚合物,钢渣中的硅酸钙受碱激发生成C-S-H凝胶,不反应的固体作填充料增加了材料的抗压强度。  相似文献   

4.
以高岭土、水玻璃和NaOH为原料,制备矿物聚合物材料,研究高岭土煅烧温度及掺量、水玻璃和NaOH的掺量、养护温度分别对矿物聚合物抗压强度的影响。结果表明,高岭土煅烧温度升高、掺量增大、水玻璃和NaOH的掺量的分别增大,矿物聚合物抗压强度均先增大后减小;提高养护温度,可以显著提高矿物聚合物的早期抗压强度,缩短养护时间;并讨论了各影响因素的作用机理。最后得出矿物聚合物的最佳合成条件为:高岭土在600℃煅烧4h,高岭土、水玻璃、NaOH的配比为7.5∶6∶1,在60℃下养护2h,抗压强度可达70MPa以上。  相似文献   

5.
以活化钼尾矿为主要原料,在碱激发作用下制备地聚物胶凝材料。考察了激发剂模数、硅铝摩尔比、液固比等因素对钼尾矿地聚物胶凝材料力学性能的影响。通过X射线衍射(XRD)、傅里叶红外光谱(FTIR)和扫描电镜(SEM)等检测手段对样品进行表征。结果表明,钼尾矿地聚物胶凝材料的最佳制备条件为:激发剂模数1.6,硅铝摩尔比2.8,液固比0.30。此条件下制备的地聚物3 d抗压强度为42.4 MPa、7 d抗压强度为47.6 MPa、28 d抗压强度为51.3 MPa。微观分析表明,在碱性条件下,硅铝原料中的活性Si、Al溶出,参与脱水缩聚反应,随着龄期增加,水化程度加深,地聚物内部变得更加致密,力学性能更好。  相似文献   

6.
以新疆某电厂高钙粉煤灰为原料,水玻璃为碱激发剂制备了高钙粉煤灰地质聚合物胶凝材料。研究了水玻璃掺量、水胶比、水玻璃模数等对高钙粉煤灰地质聚合物抗压强度的影响,并对制备的聚合物材料进行了耐久性研究。结果表明,以高钙粉煤灰为原料,水玻璃(模数为1.1)掺量为8%、水胶比0.37、标准养护条件下,制备的高钙粉煤灰地质聚合物3 d、7 d和28 d抗压强度值分别为23.0 MPa、33.3 MPa与51.7 MPa。对所制备的地质聚合物进行耐久性研究表明,高钙粉煤灰地质聚合物所有龄期抗压强度均优于42.5水泥胶砂的强度,同时120 d龄期时能够到达83.3 MPa的高强度。   相似文献   

7.
习小明  廖达前 《矿冶工程》2012,32(4):93-96,100
通过多相氧化还原法制得钴酸锂前驱体。XRD分析表明:合成的前驱体具有钴酸锂的晶型特征,与标准钴酸锂XRD的特征峰完全一致;扫描电镜(SEM)分析结果表明:二次粒子非常均匀,分散状态良好。同时研究了反应温度、反应时间和Li+浓度等工艺条件对合成钴酸锂前驱体的影响,得出合成该前驱体的最佳条件为:反应温度75~85℃,反应时间6~8 h,Li+浓度20~30 g/L。此条件下,可以合成比表面积(BET)20~50 m2/g,粒径100 nm左右,Li、Co摩尔比为0.7~1.0的钴酸锂前驱体。  相似文献   

8.
以AI2(SO4)3·18H2O和CO(NH2)2 为原料,通过均匀沉淀法制备前驱物AI(OH)3,并煅烧得到超细α-AI2P3 陶瓷粉体.采用激光粒度分析仪、SEM、XRD、DSC 等对产物进行了检测.研究表明,溶液中阴离子种类、AI3 的初始摩尔浓度、反应温度、反应时间等对所合成产物的颗粒形貌影响显著.通过优化反应条件,实现了对产物形貌的有效控制,获得了分散性好、粒径为2 μm 左右且粒度分布均匀的球形超细α-AI2O3,陶瓷粉体.  相似文献   

9.
本文以粉煤灰、偏高岭土、氢氧化钠、水玻璃为主要原料,选取3种不同的发泡剂在低 温下通过碱激发反应制备了粉煤灰-偏高岭土基地质聚合物,研究了发泡剂的种类及其含量 对多孔地质聚合物的孔结构和性能的影响,并对材料的热稳定性和结构进行了测试观察分析。 研究结果表明:相比于铝粉和过硼酸钠,双氧水的发泡效果更好;地质聚合物的最佳制备工艺 条件为双氧水含量0*5%,养护温度40℃,养护湿度70%,养护时间7d;所得到的地质聚合物 的体积密度为0*985g/cm3,抗压强度为8*9MPa,导热系数为0*10W/(m·K),具有很好的 隔热保温效果。  相似文献   

10.
陈佳蓉  玉婷  张佰发  袁鹏 《非金属矿》2023,(5):18-21+34
由于城市化的推进,我国南方地区产生大量富含黏土矿物的工程渣土,亟待高效利用。本研究通过酸激发反应制备渣土基地聚物,考察了煅烧温度对酸激发渣土基地聚物力学性能的影响及机理。结果表明,渣土活化的最佳温度为700℃,制备的酸激发地聚物7 d抗压强度可由未煅烧时的2.02 MPa提升至29.04 MPa。矿物成分及微观结构分析表明,煅烧使渣土中高岭石转变为偏高岭石,提升了地聚反应活性,使渣土能够更好地与磷酸反应形成结构更密实的基质,进而提高地聚物的抗压强度。  相似文献   

11.
在碱激发剂作用下制备镍渣基地聚合物,考察自制改性粉煤灰对地聚合物力学性能的影响,并结合XRD、IR和SEM等测试方法,对试块的微观结构和性能进行研究。结果表明:改性粉煤灰的掺入有利于镍渣基地聚合物力学性能的提高。当改性粉煤灰掺量为20%时效果最佳,50 ℃养护7 d时地聚合物的抗折强度和抗压强度分别比镍渣地聚合物提高了32.0%和20.2%。主要是改性粉煤灰颗粒表面含有的β-C2S参与反应后产生更多的凝胶相,有利于改善地聚合物结构的致密性,增强与改性粉煤灰颗粒表面碱激发产物的胶结能力。同时,钙源的引入也有助于改性粉煤灰在碱溶液的溶解,提高体系反应速率。  相似文献   

12.
为研究地聚物的弱碱性激发技术,以湖北某地的页岩提钒尾渣为原料,进行了地聚物碱激发研究。主要研究了不同偏高岭土掺量、激发剂模数和激发剂用量对地聚物抗压强度的影响。最终确定在m(提钒尾渣):m(偏高岭土)=9:1,弱碱性激发剂Na2SiO3的模数为3.0,Na2SiO3的掺量为14%的激发制度下,地聚物试样3 d的抗压强度即可达到27.55 MPa,极大地提高了地聚物的抗压性能。对不同模数的硅酸钠下制备的地聚物进行物相转变、化学键变化和微观形貌分析,发现在液体硅酸钠的作用下,页岩提钒尾渣中的石英被进一步溶解;溶解的无定形硅铝物质与液体硅酸钠中的硅酸根反应逐渐生成硅铝凝胶相;液体硅酸钠中的硅酸根起一个诱导作用,液体硅酸钠的模数越高,其硅酸根含量越高,与页岩提钒尾渣中的无定形硅铝物质反应也越迅速,从而生成更多的硅铝凝胶相,促进了地聚物抗压强度的提高,实现了地聚物的安全制备。   相似文献   

13.
将氢氧化钠与碳酸钙混合制备碱性干粉激发剂,并与煤矸石、粉煤灰混合制备地质聚合物胶凝材料,对碱性干粉激发剂特性,聚合物材料的凝结时间、吸水率、抗压强度等基本特性进行研究,并与采用氢氧化钠溶液激发剂的聚合物特性进行对比。结果表明:生成得到的聚合物的浓度与干粉激发剂中碳酸钙的量成反比;与采用氢氧化钠溶液激活的聚合物相比,采用干粉激发剂激发的聚合物凝结时间短、吸水率低、抗压强度高,说明干粉激发剂有独有优势。干粉激发聚合物的吸水率随水灰比的增加而增加,需注意控制水灰比;干粉激发聚合物抗压强度与干粉激发剂中的氢氧化钠浓度有关,氢氧化钠的浓度过高或过低都会导致抗压强度下降。  相似文献   

14.
以粉煤灰为原料,系统研究了水玻璃模数及掺量、水胶比、温度、外掺剂等参数对粉煤灰基地质聚合物凝结时间的影响。研究结果表明,随着温度升高,地质聚合物凝结时间显著降低; 在10 ℃条件下,地质聚合物凝结时间随着水玻璃掺量增加而增加,随水玻璃模数增加先增加后减小,水胶比对地质聚合物凝结时间影响较小,掺入Ca(OH)2会促进地质聚合物的凝结。在粉煤灰掺量100%、水玻璃模数1.2、水玻璃掺量8%、水胶比0.35、养护温度10 ℃条件下,地质聚合物的初凝及终凝时间分别为65 min和114 min,在养护3 d和28 d后,地质聚合物的强度分别为23 MPa和51.7 MPa。  相似文献   

15.
采用比表面积测试、活性铝含量测定、TG/DSC、XRD和分析测试手段表征煅烧制度对高岭土理化性质和微观结构的影响,揭示煅烧活化高岭土的相关活化机理。采用煅烧后的高岭土为原料制备地聚物样品,以抗压强度评价煅烧制度对地聚物性能的影响。结果表明:高岭土在600~900℃煅烧2 h后,大量羟基被脱除,晶体结构崩塌,煅烧产物为非晶态偏高岭土;在800℃煅烧4 h后,高岭土比表面积和活性硅、铝溶出率均达到最大值,具有较高的反应活性,由其制备的地聚物试样3 d抗压强度达到最大30.22 MPa,高岭土的煅烧制度对地聚物性能具有较大影响;地聚物抗压强度与高岭土中活性铝含量呈正相关。  相似文献   

16.
张大明  任凤玉 《金属矿山》2016,45(11):193-196
为更方便、高效、安全地激发煤矸石的活性,制造出满足建筑需要的地质聚合物,用氢氧化钠与碳酸钙混合制备的碱性干粉激发剂替代氢氧化钠,对煤矸石、粉煤灰和标准砂进行处理,研究影响干粉激发煤矸石地质聚合物性能的因素,并与传统碱性溶液激发聚合物的特性进行了对比。结果表明:①升高养护温度、提高干粉激发剂中氢氧化钠的用量会加快地质聚合物的凝结和硬化速度。②养护温度升高可使试件的吸水率和抗压强度上升。③干粉激发剂中碳酸钙用量的增加会使地质聚合物试件的吸水率上升、抗压强度下降。④干粉激发剂中氢氧化钠用量为3%时,地质聚合物试件的吸水率最低、抗压强度最高。⑤无论从吸水率的角度还是从抗压强度的角度看,干粉激发剂的激发效果均好于氢氧化钠溶液。因此,干粉激发剂比氢氧化钠溶液更适合于激发煤矸石制备煤矸石基地质聚合物。  相似文献   

17.
《Minerals Engineering》2003,16(3):205-210
This paper describes research into the use of granulated blast furnace slag as an active filler in the making of geopolymers. During this work it was found that geopolymer setting time correlates well with temperature, potassium hydroxide concentration, metakaolinite and sodium silicate addition. The physical and mechanical properties of the geopolymer also correlated well with the concentration of alkaline solution and the amount of metakaolinite that is added. The highest compressive strength achieved was 79 MPa. For fire resistance tests, a 10 mm thick geopolymer panel was exposed to a 1100 °C flame, with the measured reverse-side temperatures reaching less than 350 °C after 35 min. The products can be fabricated for construction purposes and have great potential for engineering applications.  相似文献   

18.
袁学锋  王花 《金属矿山》2022,51(11):259-264
作为新型胶凝材料,地质聚合物应用前景广阔,而利用镍渣制备地质聚合物对实现固废综合利用有重要意义。通过硅酸钠和氢氧化钠复合碱溶液活化制备了镍渣—粉煤灰基地质聚合物,探讨了粉煤灰掺量对地质聚合物力学性能、抗冻性能、抗海水侵蚀性能的影响,并结合XRD、SEM及孔结构分析等手段阐明变化规律。结果表明:① 粉煤灰的引入,提高了地质聚合物的强度;当粉煤灰掺量为10%时,力学性能最优,7、28 d抗压强度分别为37.2、42.5 MPa,相比空白组试样分别提高了21.97%和17.40%。② 适量粉煤灰的掺入能够进一步降低地质聚合物在冻融循环、干湿循环中的抗压强度损失及质量损失。当掺入10%粉煤灰时,50次冻融循环后试样的抗压强度损失率、质量损失率分别为24.7%、14.9%,50次干湿循环后的抗压强度损失率为21.5%。③ 粉煤灰对碱激发的反应有益,增加了反应产物;同时,粉煤灰更小的颗粒粒径,对地质聚合物提供了更好的填充效应。研究结果可为镍渣—粉煤灰基地质聚合物的开发及相关耐久性能问题的探索提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号