首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 468 毫秒
1.
针对芬顿反应CMP抛光GaN晶片的抛光液,开展以表面质量为评价指标的参数优化试验,找出抛光液组分的最优配比。结果表明:当H2O2质量分数为7.5%时,GaN晶片加工表面效果最优,表面粗糙度达到3.2 nm;催化剂能有效调节芬顿反应的速率,对比液体催化剂FeSO4溶液和固体催化剂Fe3O4粉末,固体催化剂Fe3O4粉末能在溶液中持续电离Fe2+,使芬顿反应能在整个加工过程中持续作用。当Fe3O4粉末粒径为20 nm时,抛光效果最佳,表面粗糙度达到3.0 nm;对比氧化铝、氧化铈、硅溶胶磨料,硅溶胶磨料抛光的表面效果最佳,晶片表面粗糙度达到3.3 nm;当硅溶胶磨料质量分数为20.0%,磨料粒径为60 nm时,抛光后晶片表面粗糙度达到1.5 nm。抛光液组分优化后,采用最优的抛光液组分参数抛光GaN晶片,其能获得表面粗糙度为0.9 nm的光滑表面。   相似文献   

2.
路家斌  熊强  阎秋生  王鑫  廖博涛 《表面技术》2019,48(11):148-158
目的为了探究紫外光催化辅助抛光过程中,化学反应速率对SiC化学机械抛光的影响规律。方法通过无光照、光照抛光盘和光照抛光液3种光照方式,研究紫外光催化辅助作用对单晶SiC抛光过程中材料去除率的影响。测量不同条件下光催化反应过程中的氧化还原电位(ORP)值,来表征光催化反应速率,并进行了单晶SiC的紫外光催化辅助抛光实验,考察光催化反应速率对抛光效果的影响规律。结果实验表明,引入紫外光催化辅助作用后,材料去除率提高14%~20%,随着材料去除率的增加,光催化辅助作用对材料去除率的影响程度变小。光照射抛光液方式的材料去除率明显高于光照射抛光盘。不同条件下的抛光结果显示,化学反应速率越快,溶液的ORP值越高,材料去除率越大,表面粗糙度越低。在光照抛光液、H_2O_2体积分数4.5%、TiO_2质量浓度4 g/L、光照强度1500 mW/cm~2、pH=11的条件下,用W0.2的金刚石磨料对SiC抛光120 min后,能够获得表面粗糙度Ra=0.269 nm的光滑表面。结论在单晶SiC的紫外光催化辅助抛光过程中,光催化反应速率越快,溶液ORP值越高,抛光效率越高,表面质量越好。在H_2O_2浓度、TiO_2浓度、光照强度、pH等4个因素中,对抛光效果影响最大的是H_2O_2浓度,光照强度主要影响光催化反应达到稳定的时间。  相似文献   

3.
为提高化学机械抛光的加工效果,我们研究了pH值、氧化剂种类和氧化剂含量对材料去除率和表面粗糙度的影响。结果表明:不同氧化剂的抛光液在各自的最佳pH值时达到最大的材料去除率,分别为181 nm/min(H2O2抛光液,pH=9),177 nm/min(Cr2O3抛光液,pH=11),172 nm/min(Na2Cr2O7抛光液,pH=11)和147 nm/min(NaClO抛光液,pH=13);抛光液中氧化剂含量、pH值对抛光后不锈钢的表面粗糙度影响较小。其中,材料去除率较高的H2O2和Cr2O3可作为304不锈钢化学机械抛光碱性抛光液的氧化剂。   相似文献   

4.
目的研究抛光液pH值、温度和浓度对化学机械抛光蓝宝石去除率的影响,以提高抛光效率。方法采用CP4单面抛光试验机对直径为50.8 mm C向蓝宝石晶元进行化学机械抛光,通过电子分析天平对蓝宝石抛光过程中的材料去除率进行了分析,采用原子力显微镜(AFM)对蓝宝石晶元抛光前后的表面形貌和粗糙度(Ra)进行了评价。结果蓝宝石在化学机械抛光过程中的材料去除率均随抛光液pH值和温度的升高呈先增大后减小趋势。当抛光原液与去离子水按1:1的体积比混合配制抛光液,KOH调节pH值为12.2,水浴加热抛光液35℃时,蓝宝石抛光的材料去除率(MRR)达到1.119μm/h,Ra为0.101 nm。结论随着pH的增大,化学作用逐渐增强,而机械作用逐渐减弱,在pH为12.2的时候能达到平衡点,此时的MRR最佳;随着温度的升高,化学作用逐渐增强,而机械作用保持不变,抛光液温度为35~40℃时,化学作用与机械作用达到平衡,MRR最佳,当温度高于40℃后,抛光液浓度明显增大,而过高的浓度会导致MRR的减小。抛光液的相关性能优化后,化学机械抛光蓝宝石的MRR较优化前提高了71.4%。  相似文献   

5.
目的 采用对环境友好的抛光工艺来改善304不锈钢表面抛光质量。方法 基于化学机械抛光(CMP)工艺,采用主要成分为氧化铝(Al2O3)磨料、L-苹果酸、过氧化氢(H2O2)、乳化剂OP-10、甘氨酸的绿色环保抛光液,设计并试验了pH值,H2O2、乳化剂OP-10、甘氨酸质量分数的4因素4水平CMP正交试验。采用极差法分析了4个因素对表面粗糙度和材料去除率的影响。采用电化学工作站,通过动电位极化曲线法,分析304不锈钢在不同抛光液环境下的静态腐蚀特性。通过X射线光电子能谱(XPS),分析304不锈钢在不同抛光液环境下的表面元素和化学组分变化。结果 开发了一种不含任何强酸、强碱等危化物品的新型环保化学机械抛光液。通过绿色CMP加工,在70μm×50μm范围内将304不锈钢平均表面粗糙度从CMP前的7.972 nm降至0.543 nm。与之前报道的304不锈钢抛光相比,绿色CMP抛光后的表面粗糙度最低。通过正交试验,得到了绿色CMP加工的最优抛光液参数:pH=3...  相似文献   

6.
研究紫外光辅助催化抛光6H-SiC单晶。用分光光度法定性检测不同光催化反应时间下甲基橙颜色变化和羟基自由基(·OH)浓度,研究无光照、光照抛光盘、光照抛光液3种光照方式及金刚石、碳化硅、二氧化硅、二氧化钛、硅溶胶5种磨料对6H-SiC单晶抛光的影响。结果表明:随着光照时间增加,·OH浓度增加;在3种光照方式下,不同磨料的材料去除率(MRR)均呈现光照抛光液>光照抛光盘>无光照的规律,且光照抛光液时的MRR比无光照时的MRR提升了18%~58%。随磨料硬度降低,光催化辅助作用对MRR的提高幅度升高,即紫外光催化辅助作用越明显;金刚石、碳化硅、二氧化硅、硅溶胶4种磨料抛光后的表面粗糙度都随MRR的增大而减小,但二氧化钛磨料的则相反,原因是二氧化钛磨料同时兼作光催化剂,增强了SiC表面的化学反应速率,使其化学反应速率大于机械去除速率。   相似文献   

7.
为了研究抛光工艺参数(抛光压力、抛光台转速、抛光液流量)对精细雾化抛光TFT-LCD玻璃基板的影响,实现对玻璃基板的高效、高质量加工,采用正交试验方法对玻璃基板进行雾化抛光,以材料去除率(MRR)和表面粗糙度(Ra)为评价指标,根据实验结果得到最优的工艺参数组合,并将传统抛光和雾化抛光进行了对比。结果表明:当压力为0.055 MPa,抛光台转速为65r/min,抛光液流量为8.3mL/min时,雾化抛光的材料去除率为219nm/min,表面粗糙度Ra为1.1nm,光学透过率≥92.6%。在相同的试验条件下,传统抛光的去除率和表面粗糙度分别为335nm/min和1.2nm,两种方法的抛光效果相近,但雾化方法抛光液用量仅为传统的1/10。  相似文献   

8.
目的提高6H-SiC晶片Si面化学机械抛光(CMP)的材料去除率(MRR),改善其抛光表面质量。方法使用含有不同Cu~(2+)浓度和甘氨酸形成的配合物作为催化剂、H2O2作为氧化剂的抛光液,对6H-SiC晶片Si面进行CMP。使用精密天平称量SiC晶片抛光前后的质量,计算其MRR。使用AFM观测Si C晶圆表面,测其表面粗糙度(Ra)。使用Zeta电位仪测量在不同Cu~(2+)浓度下纳米氧化硅磨粒的Zeta电势和粒径分布。使用摩擦磨损试验机测量不同Cu~(2+)浓度时Si C晶圆的摩擦系数。对比不同压力和转速在CMP中对Si C的MRR和Ra的影响。结果随着Cu~(2+)浓度的增大,MRR先增大后减小,在Cu~(2+)体积浓度为300μmol/L时,MRR有最大值,为82 nm/h,此时,Ra为0.156 nm;相比之下,不加入Cu~(2+)-甘氨酸配合物的MRR为62 nm/h,Ra为0.280 nm。同时,随着Cu~(2+)浓度的增大,一方面,溶液中磨粒的Zeta电势绝对值不断减小,但高于不加入Cu~(2+)-甘氨酸配合物时的Zeta电势绝对值;另一方面,其平均粒径逐渐增大,但低于不加入Cu~(2+)-甘氨酸配合物时的平均粒径(104.0nm)。另外,随着Cu~(2+)浓度的增大,Si C晶圆的摩擦系数先增大后减小,在300μmol/L时达到最大,为0.6137。最后,随着压力的增大,MRR不断增加,但压力过大,使得Ra增大。随着抛光盘转速的增大,MRR先增大后减小,Ra无明显变化,在120 r/min时,MRR有最大值,为96 nm/h,Ra为0.161nm。结论 Cu~(2+)-甘氨酸配合物作为催化剂能够加快Si C化学机械抛光中的化学氧化速率,从而提高MRR,并且能够提高抛光液分散稳定性,改善Si C晶圆表面质量。另外,增大抛光压力可以增强机械磨削作用,提高MRR,但压力过大,会损伤晶片表面。抛光盘转速的增大也可以提高MRR,但其过大则会使抛光液外溅,降低化学作用,导致MRR降低。  相似文献   

9.
目的 高效快速获得紫外光辅助作用下碳化硅(SiC)化学机械抛光(Chemical mechanical polishing, CMP)的最佳加工参数。方法 根据化学作用与机械作用相平衡时达到最佳抛光条件的理论,通过电化学测试的方法探究抛光液pH值、过氧化氢(Hydrogen peroxide, H2O2)浓度、Fe2+浓度、紫外光功率等对基体表面氧化膜形成速率(化学作用)的影响;在最大氧化膜形成速率条件下,以材料去除率(Material removal rate, MRR)和表面粗糙度(Average roughness, Ra)为指标,通过调节抛光压力、抛光盘转速、抛光液流量等工艺参数,探究工艺参数对碳化硅加工过程中氧化膜去除速率(机械作用)的作用规律,寻求机械作用与化学作用的平衡点,获取紫外光辅助作用下SiC CMP的最佳工艺参数。结果 在pH值为3、H2O2的质量分数为4%、Fe2+浓度为0.4 mmol/L、紫外光功率为32 W时,化学作用达到最大值。在最大化学作用条件下,抛光压力、抛光盘转速、抛光液流量分别为38.68 kPa、120 r/min、90 mL/min时,化学作用与机械作用最接近于平衡点,此时材料去除率为92 nm/h,表面粗糙度的最低值为0.158 nm。结论 根据研究结果,电化学测试可以作为探究晶片表面氧化速率较高时所需加工参数的有效手段,进一步调节工艺参数,使化学作用速率与机械去除速率相匹配,高效地获得了材料去除率和表面质量较高的晶片。  相似文献   

10.
钇铝石榴石(YAG)晶体由于其优异的物理化学和光学性能,广泛用作激光器的激光增益介质。然而,目前的加工方法很难满足YAG晶体的高效高质量加工。基于传统硅溶胶抛光液的抛光机理,配制一种化学机械抛光液,并通过正交试验优化化学机械抛光液的成分配比。使用优化后的抛光液抛光YAG晶体,其化学机械抛光材料去除率提升至34 nm/min,抛光后YAG晶体表面粗糙度为0.5 nm。相比于传统硅溶胶抛光液,新型抛光液的抛光效率提升240%,抛光工件的表面粗糙度降低17%。同时,通过对比抛光液性能提出化学机械抛光界面的相互作用模式对材料去除率的影响原因。   相似文献   

11.
目的制备分散稳定性良好的α-Al2O3纳米粒子抛光浆料,提高对蓝宝石的化学机械抛光性能。方法将α-Al2O3分散在硅溶胶、氧化铈溶胶、水等不同分散介质中,于不同pH值、不同硅溶胶浓度及硅溶胶粒径等条件下制备出α-Al2O3纳米粒子的抛光浆料,考察抛光浆料的稳定性及抛光浆料对蓝宝石化学机械抛光性能的影响。采用Zeta电位仪测量抛光浆料中α-Al2O3的电势,进而对其分散稳定性进行分析。采用原子力显微镜(AFM)和分析天平分别对蓝宝石表面粗糙度(Ra)和材料去除速率(MRR)进行评价。结果分散介质为硅溶胶时,抛光浆料的稳定性及对蓝宝石的抛光性能较好。当抛光浆料pH值为10时,其分散稳定性较好,且化学腐蚀与机械研磨达到动态平衡,抛光浆料对蓝宝石的抛光性能较好。随着α-Al2O3浓度的增大,浆料的抛光性能呈现先增加后降低的趋势,当α-Al2O3的质量分数为10.0%时,抛光浆料对蓝宝石的抛光性能较好。当硅溶胶的质量分数为0.02%时,抛光浆料的分散稳定性及对蓝宝石的抛光性能较好。随着硅溶胶粒径的增加,抛光浆料的稳定性及对蓝宝石的抛光性能逐渐变差,所以选择最小粒径5 nm的硅溶胶作分散介质。即在10.0%的α-Al2O3、0.02%粒径为5 nm的硅溶胶、pH值为10等条件下的抛光浆料稳定性较好,该浆料对蓝宝石抛光的材料去除速率为15.16 nm/min,抛光后的表面粗糙度为0.272 nm,满足蓝宝石后续外延工艺要求。结论适宜浓度的硅溶胶能明显改善α-Al2O3抛光浆料的分散稳定性,分散效果明显优于水或氧化铈溶胶作分散介质,且对蓝宝石的抛光性能得到显著提高。  相似文献   

12.
用游离磨料对圆光栅玻璃表面进行了研磨抛光实验,讨论了磨粒尺寸、磨料质量分数、加工时间、研磨盘转速、加载压力、抛光垫材料对试件表面粗糙度和材料去除率的影响。研究表明,硬质抛光垫能更好地保持试件的平面度。获得的优化工艺参数组合为:研磨盘转速75r/min;磨料质量分数10%;研磨液流量10mL/min;5μm的Al2O3加载压力0.019MPa,粗研20min;1μm的Al2O3加载压力0.015MPa,精研20min;30nm的CeO2加载压力0.012MPa,精抛10min。在该工艺组合下,获得了表面粗糙度值Ra为3.3nm、平面度为5μm的圆光栅玻璃。  相似文献   

13.
目的提高Co在超大规模集成电路全局化学机械抛光过程中的去除速率及Co/Ti去除选择比,并对去除机理进行详细描述。方法研究不同浓度的磨料、多羟多胺络合剂(FA/OII)、氧化剂等化学成分及不同pH值对钴去除率的影响。利用电化学实验、表面化学元素分析(XPS)揭示钴实现高去除速率的机理,通过原子力显微镜(AFM)对钴抛光前后的表面形貌进行了观察,并采用正交实验法找到抛光液最佳组分配比。结果随磨料浓度的升高,钴去除速率增大。随pH值的升高,钴去除速率降低。随氧化剂浓度的提升,钴去除速率升高,但Co/Ti去除选择比先升后降。随螯合剂浓度的增大,钴去除速率及Co/Ti去除选择比均先升后降。正交试验找到了最佳的抛光液配比及条件(3%磨料+20 mL/L多胺螯合剂(FA/OⅡ)+5 mL/L氧化剂(H_2O_2),pH=8),实现了钴的高去除(~500 nm/min)及较好的Co/Ti去除选择比(100:1)。并且,表面的平坦化效果明显提高,原子力显微镜测试结果显示Co面粗糙度由原本的3.14 nm降低到0.637 nm。结论采用弱碱性抛光液能有效提升钴的去除速率,并保证腐蚀可控。抛光液中同时含有氧化剂和螯合剂时,通过强络合作用实现了钴的抛光速率和Co/Ti去除选择比的大幅度提升。  相似文献   

14.
目的 获得一种可改善单晶SiC晶圆化学机械抛光(CMP)效率的复合增效技术,实现单晶SiC晶圆高效率和低成本的加工要求,并对其增效机理进行深入研究。方法 通过抛光实验和原子力显微镜测试,探究长余辉发光粒子(LPPs)与不同光催化剂的协同作用对SiC–CMP的材料去除速率和表面粗糙度的影响。结合扫描电子显微镜(SEM)、紫外–可见漫反射光谱仪(UV–vis)、光致发光光谱仪(PL)和X射线光电子能谱仪(XPS)等仪器的测试结果,研究LPPs与光催化剂的协同增效机理。结果 与传统CMP的条件相比,在光催化条件下采用LPPs(质量分数0.5%)+TiO2(质量分数0.5%)+ H2O2(质量分数1.5%)+Al2O3(质量分数2%)的抛光液时,SiC的材料去除速率(MRR)由294 nm/h提高到605 nm/h,同时获得的晶圆表面粗糙度(Ra)为0.477 nm。然而,采用含有LPPs和ZrO2的抛光液抛光SiC时,其材料去除速率和表面粗糙度都未得到明显改善。XPS测试结果表明,LPPs与光催化剂的协同作用增强了抛光液对SiC的氧化作用。UV–vis和PL测试结果显示,LPPs与不同光催化剂协同效果的差异主要与其光学性能有关。结论 在光催化条件下,LPPs和TiO2对单晶SiC–CMP具有协同增效的作用,然而LPPs和ZrO2没有展现出协同增效的作用,即LPPs与光催化剂的协同作用可以改善SiC–CMP的性能,但是光催化剂的选择需要考虑LPPs的发光特性。  相似文献   

15.
目的 化学机械抛光(CMP)包含化学腐蚀和机械磨削两方面,抛光液pH、磨粒粒径和浓度等因素均会不同程度地影响其化学腐蚀和机械磨削能力,从而影响抛光效果。方法 采用30~150 nm连续粒径磨粒抛光液、120 nm均一粒径磨粒抛光液、50 nm和120 nm配制而成的混合粒径磨粒抛光液,分别对蓝宝石衬底晶圆进行循环CMP实验,研究CMP过程中抛光液体系的变化。结果 连续粒径磨粒抛光液中磨粒大规模团聚,满足高材料去除率的抛光时间仅有4 h,抛光后的晶圆表面粗糙度为0.665 nm;均一粒径磨粒抛光液中磨粒稳定,无团聚现象,抛光9 h内材料去除率较连续粒径磨粒抛光液高94.7%,能至少维持高材料去除率18 h,抛光后的晶圆表面粗糙度为0.204 nm;混合粒径磨粒抛光液初始状态下磨粒稳定性较高,抛光9 h内材料去除率较连续粒径磨粒抛光液高114.8%,之后磨粒出现小规模团聚现象,后9 h材料去除率仅为均一粒径磨粒抛光液的59.6%,18 h内材料去除率仅为均一粒径磨粒抛光液的87.7%,但抛光后的晶圆表面粗糙度为0.151 nm。结论 一定时间内追求较高的材料去除率和较好的晶圆表面粗糙度选用混合粒径磨粒抛光液,但需要长时间CMP使用均一粒径磨粒抛光液更适合,因此,在工业生产中需要根据生产要求配合使用混合粒径磨粒抛光液和均一粒径磨粒抛光液。  相似文献   

16.
利用自制的抛光液对高纯镍片进行化学机械抛光,研究化学机械抛光过程中抛光压力、pH值、H2O2浓度、络合剂种类及其浓度、SiO2浓度等参数对抛光速率的影响。结果表明在抛光压力为13.79kPa、H2O2浓度为0.5%,pH值为3.0,SiO2浓度为0.5%,络合剂EDTA及其浓度为1%时,得到最大抛光速率为312.3nm/min;在抛光压力为13.79kPa、pH值为4.0、SiO2浓度为1%、络合剂EDTA为1%、H2O2浓度为1%条件下抛光得到的镍片表面质量较好,表面粗糙度Ra达到5nm。并利用电化学手段研究了镍片在抛光液中的溶解与钝化行为。  相似文献   

17.
化学机械抛光中抛光垫的研究   总被引:7,自引:1,他引:7  
抛光垫是化学机械抛光(CMP)系统的重要组成部分。它具有贮存抛光液,并把它均匀运送到工件的整个加工区域等作用。抛光垫的性能主要由抛光垫的材料种类、材料性能、表面结构与状态以及修整参数等决定。本文介绍CMP过程常用的抛光垫材料种类、材料性能、表面结构,总结了抛光垫的性能对CMP过程影响规律,认为:抛光垫的剪切模量或增大抛光垫的可压缩性,CMP过程材料去除率增大;采用表面合理开槽的抛光垫,可提高材料去除率,降低晶片表面的不均匀性;抛光垫粗糙的表面有利于提高材料去除率。对抛光垫进行适当的修整可以增加抛光垫表面粗糙度、使材料去除率趋于一致。与离线修整相比较,在线修整时修整效果比较好。  相似文献   

18.
(锇有可能作为大规模集成电路铜互连扩散阻挡层新材料.)利用自制的抛光液对金属锇片进行抛光,研究在双氧水-磷酸体系抛光液中H2O2浓度和抛光液pH值对抛光速率的影响.结果表明,当抛光液中主要成分仅为氧化剂H2O2时,并不能在金属锇表面达到好的腐蚀效果.在磷酸体系抛光液中,H2O2能够通过促进阴极反应的进行从而增强抛光液对金属锇的化学作用;低浓度H2O2通过增强抛光液对金属锇的化学腐蚀能力,从而增加了抛光速率值:较高浓度H2O2的加入对抛光速率值影响较小.H3PO4能够在抛光液中起到抑制剂、pH调节剂和络合剂的作用.当抛光液pH值为4.0时,金属锇表面生成的钝化膜最致密.当pH值为4.0或5.0时,金属锇表面生成的钝化膜OCP值大于金属锇的OCP值,且此条件下的抛光速率值较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号