首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 133 毫秒
1.
提出了一种新的准静态单相能量回收逻辑,其不同于以往的能量回收逻辑,真正实现了单相功率时钟,且不需要任何额外的辅助控制时钟,不但降低了能耗,更大大简化了时钟树的设计.该逻辑还可以达到两相能量回收逻辑所具有的速度.设计了一个8位对数超前进位加法器,并分别用传统的静态CMOS逻辑、钟控CMOS绝热逻辑(典型的单相能量回收逻辑)和准静态单相能量回收逻辑实现.采用128组随机产生的输入测试向量的仿真结果表明:输入频率为10MHz时,准静态能量回收逻辑的能耗仅仅是传统静态CMOS逻辑的45%;当输入频率大于2MHz时,可以获得比时钟控CMOS绝热逻辑更低的能耗.  相似文献   

2.
李舜  周锋  陈春鸿  陈华  吴一品 《半导体学报》2007,28(11):1729-1734
提出了一种新的准静态单相能量回收逻辑,其不同于以往的能量回收逻辑,真正实现了单相功率时钟,且不需要任何额外的辅助控制时钟,不但降低了能耗,更大大简化了时钟树的设计.该逻辑还可以达到两相能量回收逻辑所具有的速度.设计了一个8位对数超前进位加法器,并分别用传统的静态CMOS逻辑、钟控CMOS绝热逻辑(典型的单相能量回收逻辑)和准静态单相能量回收逻辑实现.采用128组随机产生的输入测试向量的仿真结果表明:输入频率为10MHz时,准静态能量回收逻辑的能耗仅仅是传统静态CMOS逻辑的45%;当输入频率大于2MHz时,可以获得比时钟控CMOS绝热逻辑更低的能耗.  相似文献   

3.
杨骞  周润德 《半导体学报》2004,25(11):1515-1520
通过把阈值逻辑应用在能量回收电路中,提出了一种新的电路形式——能量回收阈值逻辑电路(energyre-coverythresholdlogic,ERTL).阈值逻辑的应用,使ERTL电路的门复杂度大大降低,同时进一步降低了功耗.分别以ERTL电路和静态CMOS电路设计了4位超前进位加法器,两个加法器采用相同的结构.ERTL加法器逻辑电路的晶体管数目只占静态CMOS加法器的63%,与现有的能量回收电路相比,硬件开销减少.设计使用的是TSMC0.35μm工艺,分别在3V和5V工作电压下对电路进行Spice仿真.仿真结果显示,在实际的工作负载和工作频率范围内,ERTL电路的能耗只有静态CMOS电路的14%~58%  相似文献   

4.
通过把阈值逻辑应用在能量回收电路中,提出了一种新的电路形式--能量回收阈值逻辑电路(energy recovery threshold logic,ERTL).阈值逻辑的应用,使ERTL电路的门复杂度大大降低,同时进一步降低了功耗.分别以ERTL电路和静态CMOS电路设计了4位超前进位加法器,两个加法器采用相同的结构.ERTL加法器逻辑电路的晶体管数目只占静态CMOS加法器的63%,与现有的能量回收电路相比,硬件开销减少.设计使用的是TSMC 0.35μm工艺,分别在3V和5V工作电压下对电路进行Spice仿真.仿真结果显示,在实际的工作负载和工作频率范围内,ERTL电路的能耗只有静态CMOS电路的14%~58%.  相似文献   

5.
钟控准静态能量回收逻辑电路   总被引:3,自引:3,他引:0  
钟控准静态能量回收逻辑 (clocked quasi- static energy recovery logic,CQSERL)只在输入信号导致输出状态发生变化的情况下才对电路节点充电 (或者回收 ) ,不需要在每个功率时钟周期循环充电和回收操作 ;CQSERL是单端输入输出逻辑 ,减小了电路实现代价 .设计了 4位 QSERL 串行进位加法器 (RCA)电路 ,和相应的 CMOS电路进行了功耗比较 .功率时钟为 10 MHz时 ,CQSERL 电路功耗是对应 CMOS电路的 35 % .流片实现了一个简单结构的正弦功率时钟产生电路 ,功率时钟的频率和相位与外接系统时钟相同  相似文献   

6.
钟控准静态能量回收逻辑(clocked quasi-static energy recovery logic,CQSERL)只在输入信号导致输出状态发生变化的情况下才对电路节点充电(或者回收),不需要在每个功率时钟周期循环充电和回收操作;CQSERL是单端输入输出逻辑,减小了电路实现代价.设计了4位QSERL串行进位加法器(RCA)电路,和相应的CMOS电路进行了功耗比较.功率时钟为10MHz时,CQSERL电路功耗是对应CMOS电路的35%.流片实现了一个简单结构的正弦功率时钟产生电路,功率时钟的频率和相位与外接系统时钟相同.  相似文献   

7.
随着超大规模集成电路的不断发展和提高,功耗问题成了集成电路设计中不可忽略的因素。本课题通过对树形乘法器和正反馈绝热逻辑(PFAL)电路工作原理的研究,提出一种四相功控基于PMOS管的PFAL绝热逻辑乘法器设计方案。在45nm工艺下通过HSPICE模拟仿真,仿真结果显示逻辑功能正确,并且这种乘法器与传统静态CMOS乘法器相比,该设计节省电路的功耗92.9%。  相似文献   

8.
杨骞  周润德 《半导体学报》2005,26(7):1334-1339
提出了一种新型能量回收电路ERCCL(能量回收电容耦合逻辑),该电路的能耗低于传统CMOS电路及其他能量回收电路.ERCCL利用电容耦合进行逻辑求值,因此可以在一个门中低能耗地实现高扇入、高复杂度的逻辑.同时ERCCL是一种阈值逻辑.所以一个基于ERCCL的系统可以大大减少逻辑门数,从而降低系统能耗.针对ERCCL提出了一种阈值逻辑综合方法.用基准电路集MCNC做了相应的实验.与SIS的综合结果相比,该方法大约减少80%的逻辑门.  相似文献   

9.
提出了一种新型能量回收电路ERCCL(能量回收电容耦合逻辑),该电路的能耗低于传统CMOS电路及其他能量回收电路.ERCCL利用电容耦合进行逻辑求值,因此可以在一个门中低能耗地实现高扇入、高复杂度的逻辑.同时ERCCL是一种阈值逻辑.所以一个基于ERCCL的系统可以大大减少逻辑门数,从而降低系统能耗.针对ERCCL提出了一种阈值逻辑综合方法.用基准电路集MCNC做了相应的实验.与SIS的综合结果相比,该方法大约减少80%的逻辑门.  相似文献   

10.
基于CTGAL电路的绝热4-2压缩器和乘法器设计   总被引:1,自引:1,他引:0  
通过对并行乘法器和钟控传输门绝热逻辑(Clocked Transmission Gate Adiabatic Logic,CTGAL)电路工作原理及结构的研究,提出了基于CTGAL电路的绝热4-2压缩器的设计方案,与传统CMOS逻辑的4-2压缩器相比,此压缩器节省平均功耗约87%.在此基础上,进一步设计了4×4位绝热乘法器,HSPICE模拟结果表明了所设计的电路具有正确的逻辑功能和显著的能量恢复特性.  相似文献   

11.
A new quasi-static energy recovery logic family (QSERL) using the principle of adiabatic switching is proposed in this paper. Most of the previously proposed adiabatic logic styles are dynamic and require complex clocking schemes. The proposed QSERL uses two complementary sinusoidal supply clocks and resembles the behavior of static CMOS. Thus, switching activity is significantly lower than dynamic logic. In addition, QSERL circuits can be directly derived from static CMOS circuits. A high-efficiency clock generation circuitry, which generates two complementary sinusoidal clocks compatible to QSERL, is also presented in this paper. The adiabatic clock circuitry locks the frequency of clock signals, which makes it possible to integrate adiabatic modules into a VLSI system. We have designed an 8×8 carry-save multiplier using QSERL logic and two phase sinusoidal clocks. SPICE simulation shows that the QSERL multiplier can save 34% of energy over static CMOS multiplier at 100 MHz  相似文献   

12.
This paper proposes an 8?×?8 bit parallel multiplier using MOS current mode logic (MCML) for low power consumption. The 8?×?8 bit multiplier is designed with the proposed MCML full adders and the conventional full adders. The proposed multiplier is achieved to reduce the power consumption by 9.4% and the power-delay-product by 11.7% compared with the conventional circuit. The validity and effectiveness are verified through HSPICE simulation. The proposed multiplier is designed with the Samsung 0.35?μm standard CMOS process.  相似文献   

13.
This paper presents a low power 16‐bit adiabatic reduced instruction set computer (RISC) microprocessor with efficient charge recovery logic (ECRL) registers. The processor consists of registers, a control block, a register file, a program counter, and an arithmetic and logical unit (ALU). Adiabatic circuits based on ECRL are designed using a 0.35 µm CMOS technology. An adiabatic latch based on ECRL is proposed for signal interfaces for the first time, and an efficient four‐phase supply clock generator is designed to provide power for the adiabatic processor. A static CMOS processor with the same architecture is designed to compare the energy consumption of adiabatic and non‐adiabatic microprocessors. Simulation results show that the power consumption of the adiabatic microprocessor is about 1/3 compared to that of the static CMOS microprocessor.  相似文献   

14.
In this paper, we present a noise-tolerant high-performance static circuit family suitable for low-voltage operation called skewed logic. Skewed logic circuits in comparison with Domino logic have better scalability and are more suitable for low voltage applications because of better noise margins. Skewed logic and its variations have been compared with Domino logic in terms of delay, power, and dynamic noise margin. A design methodology for skewed CMOS pipelined circuits has been developed. To demonstrate the applicability of the proposed logic style, 0.35 /spl mu/m 5.56 ns CMOS 16/spl times/16 bit multipliers have been designed using skewed logic circuits and fabricated through MOSIS. Measurement results show that the multiplier only consumed a power of 195 mW due to its low clock load.  相似文献   

15.
This paper presents the design and experimental evaluation of a new type of irreversible energy recovery logic (ERL) families called complementary energy path adiabatic logic (CEPAL). It inherits the advantages of quasi-static ERL (QSERL) family, but is with improved driving ability and circuit robustness. The proposed logic style features no hold phase compared to its QSERL counterpart under the same operation conditions; thereupon no feedback keeper is required so that considerable improvements in area and power overheads can be achieved. Moreover, its throughput becomes twice as high as that of QSERL when their frequencies of power clocks (PCs) are identical. Results on the impact of variation on CEPAL are provided. Comparison between CEPAL and other known low-power logic style achieving iso-performance, namely, subthreshold logic is also given. In order to demonstrate workability of the newly developed circuit, an 8-bit shift register, designed in the proposed techniques, has been fabricated in a TSMC 0.18- $mu$m CMOS process. Both simulation and measurement results verify the functionality of such a logic, making it suitable for implementing energy-aware and performance-efficient very-large scale integration (VLSI) circuitry.   相似文献   

16.
Adiabatic pseudo-domino logic   总被引:1,自引:0,他引:1  
Wang  W.Y. Lau  K.T. 《Electronics letters》1995,31(23):1982-1983
A new logic structure, adiabatic pseudo-domino logic (APDL), which is the combination of adiabatic theory and CMOS domino logic is described. APDL circuits are compact, easy to cascade, and have outputs that are more stable than other adiabatic logic. Comprehensive circuit simulations show that APDL logic can recover over 80% of the energy dissipated in conventional static CMOS logic  相似文献   

17.
In this paper, we describe an energy-efficient carry-lookahead adder using reversible energy recovery logic (RERL), which is a new dual-rail reversible adiabatic logic. We also describe an eight-phase, clocked power generator that requires an off-chip inductor. For the energy-efficient design of reversible logic, we explain how to control the overhead of reversibility with a self-energy-recovery circuit. A test chip was implemented with a 0.8 μm CMOS technology, which included two 16-bit carry-lookahead adders to allow fair comparison: an RERL one and a static CMOS one. Experimental results showed that the RERL adder had substantial advantages in energy consumption over the static CMOS one at low operating frequencies. We also confirmed that we could minimize the energy consumption in the RERL circuit by reducing the operating frequency until adiabatic and leakage losses were equal  相似文献   

18.
In this paper, a double-precision carry-save adder (CSA)-based array multiplier is designed using the Dual Mode Logic (DML) approach in a commercial 65-nm low-power CMOS technology. DML typically allows on-the-fly controllable switching at the gate level between static and dynamic operation modes. The proposed multiplier exploits this unique ability of DML to efficiently trade performance and energy consumption when considering on-demand double-precision (8 × 8-bit or 16 × 16-bit) operations. This occurs in the DML multiplier working in a mixed operation mode, i.e., by employing the static and dynamic mode for lower and higher precision operations, respectively. In fact, the use of the dynamic mode for higher precision operations ensures higher performance as compared to the standard CMOS circuit (16% gain on average) at the cost of higher energy consumption. Such energy penalty is counterbalanced at lower precision operations where the static mode is enabled in the DML circuit. Overall, the adoption of the mixed operation mode in the proposed DML multiplier proves to be beneficial to achieve a better performance/energy trade-off with respect to the standard CMOS implementation and to the case when using either the static or the dynamic mode for both operations at the two different precisions. When compared to its CMOS counterpart, our DML design operating in the mixed mode exhibits an average improvement of 15% in terms of energy-delay product (EDP) under wide-range supply voltage scaling. Such benefit is maintained over process-voltage-temperature (PVT) variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号