首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
目的:本文采用高效液相色谱法对豆制品中的酸性橙Ⅱ、碱性橙2及碱性嫩黄0残留同时展开测定。方法:经预处理、净化及萃取后的样品,采用高效液相色谱法进行检测。结果:经检测之后,得到酸性橙Ⅱ、碱性橙2和碱性嫩黄O的检出限分别为0.01、0.02、0.01 mg/kg,相对标准偏差平均3.53%。结论:该方法检测速度快、准确率高,可用于食品中非食用色素的快速检测。  相似文献   

2.
碱性橙是一种碱性偶氮类工业染料,禁止作为食品添加剂。由于其易上色且不易褪色,常常被不法商贩非法添加到食品中,对消费者的健康产生严重影响。所以,建立对碱性橙的检测方法十分重要,前处理过程会直接影响到检测结果的准确性和可靠性,因此前处理过程中的提取、分离及净化过程尤为重要。本文在碱性橙的检测方法、碱性橙的提取试剂、提取方法及碱性橙前处理中固相萃取所用材料等方面进行了综述,并对样品前处理过程的优化做出了展望。  相似文献   

3.
高效液相色谱法测定食品中非食用色素   总被引:2,自引:0,他引:2  
建立食品中的酸性橙Ⅱ、碱性橙2和碱性嫩黄O染料残留的高效液相色谱同时测定的方法,样品通过提取之后,采用基质固相分散法净化,然后分别用乙醇和乙醇-氨水-水(7:2:1)分步洗脱,最后进行HPLC分离、检测.此方法的回收率平均为79%.酸性橙Ⅱ的检出限为0.01 mg/kg、碱性橙2的检出限为0.02 mg/kg,碱性嫩黄O染料的检出限为0.01 mg/kg,相对标准偏差平均为3.53%.  相似文献   

4.
该研究建立高效液相色谱法同时检测食品中酸性橙Ⅱ和碱性嫩黄O的方法,对高效液相色谱中色谱柱、柱温、流动相种类及比例、流速、波长等影响因素进行了研究及优化,得到色谱检测条件为:色谱柱为Kromasil C18(4.6 mm×150 mm,5 μm);流动相为甲醇-50 mmol/L乙酸铵溶液=50∶50(V/V);流速:1.0 mL/min;检测波长450 nm;柱温35 ℃。在此最佳条件下,碱性嫩黄O及酸性橙Ⅱ的分离度好,且峰型正常。结果表明,该方法适合食品中碱性嫩黄O及酸性橙Ⅱ的检测。  相似文献   

5.
超高效液相色谱同时测定食品中4种工业染料   总被引:1,自引:0,他引:1  
目的建立同时测定食品中酸性橙、碱性橙、碱性嫩黄、罗丹明B工业染料的方法。方法样品用水-5%氨水乙腈-正己烷混合溶剂提取净化,采用ZORBAX Extend C18(2.1 mm i.d.×50 mm,1.8μm)分离,以乙腈—乙酸铵缓冲液梯度洗脱,流速为0.5 ml/min,二极管阵列检测器检测酸性橙(λ=485 nm)、碱性橙及碱性嫩黄(λ=435nm)、罗丹明B(λ=548 nm)。结果 4种组分在0.1~10.0 mg/L范围内有良好的线性关系(r>0.999),检测限为0.006 4~0.019 mg/kg。在番茄沙司、腊肠、辣椒油3种不同食品基质中平均加标回收率为70.0%~102.7%,相对标准偏差为0.5%~3.1%。结论方法快速,简单,可应用于食品中酸性橙、碱性橙、碱性嫩黄、罗丹明B 4种工业染料的同时检测。  相似文献   

6.
林钦  郑小严  何树坤  戴明  谢勇 《食品科学》2009,30(14):194-196
建立了食品中碱性橙、碱性嫩黄O 和碱性桃红T 染料含量的高效液相色谱检测方法。样品经碱化甲醇提取,提取液在碱性条件下用二氯甲烷萃取,浓缩后用酸化甲醇溶解并用甲醇饱和正己烷萃取净化后经高效液相色谱分离、检测。本方法检测限分别为碱性橙0.02mg/kg、碱性嫩黄O 0.03mg/kg、碱性桃红T 0.004mg/kg。6 种食品样品加标回收率实验所得回收率为72.3%~96.5%,相对标准偏差(RSD)为0.3%~8.8%(n=6),三种染料在0.05~2.5μg/ml 浓度范围内均呈良好的线性关系,线性回归系数(r)均大于0.9998。  相似文献   

7.
目的采用高效液相色谱法测定食品中非法色素添加剂的碱性橙染料即碱性橙2(chrysoidine G,CDG)、碱性橙21(orange G,AOG)及碱性橙22(astrazon orange R,AOR)。方法样品经乙腈:水:氨水(60:40:0.5,V:V:V)在25℃下超声提取30 min,以0.02 mol/L的乙酸铵溶液(pH为5)和乙腈作为流动相进行梯度洗脱,采用Agilent XDB C_(18)色谱柱进行分离,用二极管阵列检测器在449 nm波长处检测CDG,在485 nm波长处检测AOG及AOR,以外标峰面积法定量。结果 3种碱性橙染料在0.01~0.2 mg/L浓度范围内线性关系良好,方法回收率为80.0%~94.0%,相对标准偏差均小于2%(n=6),方法的检出限为0.1 mg/kg。结论本方法操作简便准确,可适用于腐竹、干辣椒和辣椒油等不同基质样品中碱性橙的检测。  相似文献   

8.
改进了食品中碱性橙检测的高效液相色谱分析方法.采用甲醇提取,Cleanea Alumina N固相萃取柱净化黄鱼和豆制品中的碱性橙,以XDB-C18(5μm,150mm×4.6mm)色谱柱进行分离,检测波长为452nm,以甲醇-0.02mol/L乙酸铵溶液为流动相梯度洗脱.碱性橙的检测线性范围为0.006~100μg/mL,最低检出浓度为0.005mg/L,RSD为3.06%.加标回收率为90.2%~97.5%.  相似文献   

9.
《广西轻工业》2013,(7):141-142
以WAX固相萃取柱作为净化手段,建立同时检测食品中违规添加苏丹红I、罗丹明B、碱性橙II(王金黄、块黄)、碱性嫩黄O、酸性橙II、碱性桃红T等工业染料含量的UPLC-MS/MS的方法。采用多反应监测质谱扫描模式(MRM),用目标物的保留时间和质谱碎片丰度比来定性,外标法定量。酸性橙II检出限为0.4μg/kg,苏丹红I为0.05μg/kg,碱性桃红T、碱性嫩黄O、罗丹明B、碱性橙II检出限为0.2μg/kg。6种染料的回收率为85.3%~103.2%;相对标准偏差(RSD)为≤8.2%,线性相关系数均大于0.998。本方法灵敏度高,操作简单高效,适合于食品中6种非法添加工业染料的定量及确证分析。  相似文献   

10.
目的建立液相色谱-电喷雾质谱法(liquid chromatography-tandem mass spectrometry, UPLC–MS/MS)检测调味品中碱性橙2的分析方法。方法样品经酸化乙腈提取,正己烷去脂后,经固相萃取小柱净化,氮气吹干进行富集后,用乙腈溶解,再采用液相色谱-电喷雾质谱进行检测,以正离子多反应监测模式测定,外标法定量。结果碱性橙2的线性范围为0.2~20 ng/mL,线性方程为Y=0.0993X-0.0106 (r=0.9999),加标回收率为90.0%~110.0%,相对标准偏差小于10.0%(n=6);方法检出限为1μg/kg,定量限为3μg/kg。结论该方法快速、准确、灵敏,适合用于食品中碱性橙2的确证检测。  相似文献   

11.
目的:建立固相萃取净化富集,分光光度法快速检测腐竹中禁用色素碱性橙的方法。方法:样品经甲醇超声提取,C18固相萃取柱萃取,以20%甲醇溶液(V/V)为清洗剂净化,80%甲醇溶液(V/V)为洗脱剂洗脱富集后,用分光光度法进行测定。结果:碱性橙在2.0~10.0μg/mL浓度范围呈现良好的线性关系,相关系数R=0.9955;在2.0~8.0μg/mL添加水平时回收率范围为102.24%~84.15%,重复性实验平均回收率为98.45%,相对标准偏差为1.87%(n=5)。结论:该法灵敏度高、重复性好,操作简便快速,结果准确,适用于腐竹中碱性橙的快速检测。  相似文献   

12.
An account is given of the use of fluorescence microscopy for the study of the structure of various animal fibres. Sections of wool, mohair, llama, cow-tail, and horse-tail fibres, which were either untreated or had had some chemical treatment, were stained with fluorescent stains; much more detail was shown by this technique than by other staining methods. Basic dyes (acridine orange, rhodamine B, rhodamine 3GO, and thioflavine T) stained the orthocortex and acid dyes (uranin and geranine G) the paracortex.  相似文献   

13.
在雪莲果、脐橙复合果汁中,脐橙可抑制多酚氧化酶的活性,具有护色作用。分别研究了脐橙、抗坏血酸(VC)和柠檬酸对复合果汁的护色效果,并通过正交实验确定了脐橙与复合护色剂的最优组合;用模糊数学法对复合果汁进行感官评价。结果表明:复合护色剂与脐橙的联合护色效果较好,其最佳配比是0.02% VC,0.3%柠檬酸,15%脐橙,此时复合果汁中残余PPO相对酶活为0.19%。模糊数学法对复合果汁的感官综合评价结果为"优",表明该果汁的感官性能很好,易于被消费者认可。  相似文献   

14.
Orange oil cloudy emulsions based on naturally occurring oil-soluble gum elemi and naturally occurring water-soluble gum arabic have been prepared and evaluated. Cloud and emulsion stability, as well as the opacity of each emulsion, were recorded and compared. It was demonstrated that the emulsion stability is determined by the gum elemi/orange oil ratio, the orange oil content, and the gum arabic/orange oil ratio. The opacity is a function of the orange oil content and to a lesser extent also depends on the gum elemi/orange oil ratio. Since the gum elemi/orange oil ratio is a critical parameter affecting both opacity and stability it should be carefully chosen and controlled.
Gum arabic is not the sole emulsifier, as gum elemi also adsorbs on the oil droplets and plays a role in emulsion stability.  相似文献   

15.
Colour of orange juice is provided by carotenoids, which belong to one of the main classes of natural pigments, although the colour of particular orange varieties, blood oranges, is mainly due to anthocyanins. Colour of food influences consumers' preferences. For orange juices, some studies have revealed that the colour of citrus beverages in general is related to the consumer's perception of the quality of these products. The USA attaches great importance to the objective evaluation of orange juice colour, to the point that this attribute is evaluated for the commercial classification of the product on the basis of its quality. Apart from the importance of orange juice colour in relation to the quality of the product, it is important to accurately measure this parameter since it has been demonstrated that colour measurements can be used to estimate the carotenoid content rapidly for quality control purposes. Owing to this factors, several techniques and instruments have been developed over the years. This review assesses these methods and the results gained from them. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
目的:建立双重实时荧光定量PCR检测橙汁饮料中橙与橘成分的方法。方法:通过设计和筛选橙、橘成分的引物和探针,检测水果寻找橙和橘的荧光扩增规律,利用橙和橘在FAM/VIC两个荧光通道上的比值差异来判定橙、橘成分。采用模拟橙汁掺杂柑橘汁试验验证方法检测的最低掺杂比例,对市售橙汁饮料进行检验来验证方法可行性。结果:纯橙水果在FAM和VIC两通道均有荧光扩增曲线,FAM/VIC通道荧光比值在0.5±0.2的范围内,而纯橘水果仅在FAM通道有很强的荧光扩增曲线。模拟掺杂试验中,可以检测出橙汁中掺有10%及以上的柑橘汁。结论:该方法能够检测橙汁饮料中的橙和橘成分,可用于市售橙汁饮料的鉴伪。  相似文献   

17.
18.
不同成熟度柑橘力学特性研究   总被引:3,自引:0,他引:3  
为避免机器人在采摘柑橘过程中对柑橘造成破坏,利用TA-XT2i型质地分析仪对青色柑橘、半成熟柑橘和成熟柑橘整果进行纵向压缩和横向最大截面处穿刺实验,研究不同成熟度柑橘的压缩抗力和最大抗穿刺力,结果表明.青色柑橘的抗破坏能力最强,承受的最大压力不宜超过190N,最大穿刺力不宜超过8N;成熟柑橘的抗破坏能力最差.承受的最大压力不宜超过100N,最大穿刺力不宜超过3N;半成熟期柑橘承受的最大压力不宜超过120N,最大穿刺力不宜超过5N.  相似文献   

19.
Encapsulation of orange oil in a spray dried double emulsion   总被引:5,自引:0,他引:5  
Edris A  Bergnståhl B 《Die Nahrung》2001,45(2):133-137
Encapsulation is an important technique being used to protect sensitive food materials like flavours from deterioration. The capsule wall isolates them from the atmospheric oxygen, moisture, temperature and light. Encapsulation also masks some objectionable flavours, e.g. fish oil and some bitter antibiotics. In this study orange oil was encapsulated in the inner compartment of a double emulsion belonging to the type O1-W-O2 where O1 is orange oil, W is water and O2 is vegetable oil. In order to make orange oil double emulsion suitable for use in dry mixes, it was secondarily coated with wall materials of lactose and caseinate using spray drying technique. Entrapment of orange oil in such structure is also expected to slow down the release of volatiles and guarantee more protection for orange oil against atmospheric conditions. This method may have a potential application in different types of food or pharmaceutical products where maximum protection for flavours or slow release are required. This study includes detailed preparation of the spray dried double emulsion, evaluation of the encapsulation efficiency using light and scanning electron microscope and calculation of the yield percent of the encapsulated oil. In a separate paper we will examine the efficiency of spray dried double emulsion to control the release of orange oil by GC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号