首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
为解决国内某铜渣的开发利用问题,以兰炭为还原剂、白云石为添加剂,采用模拟转底炉直接还原-磨矿-磁选工艺,对有价元素铁、锌的回收及杂质硫的脱除进行了研究。结果表明:在兰炭用量为25%,白云石用量为10%,还原温度为1 300 ℃,还原时间为35 min情况下,直接还原过程的锌脱除率为99.14%,可获得ZnO含量为79.59%的氧化锌粉,金属化球团经磨矿、磁选后,获得了铁品位为92.79%、铁回收率为88.12%、硫含量为0.08%的金属铁粉。机理分析表明,铜渣中的铁橄榄石、磁铁矿相大部分已转变为金属铁相,金属铁颗粒明显聚集长大,最大粒度超过100 μm,且与脉石矿物等存在清晰平滑的界面,有利于后续磨矿、磁选工序得到高品位的金属铁粉。  相似文献   

2.
为解决国内某铜渣的开发利用问题,以兰炭为还原剂、白云石为添加剂,采用模拟转底炉直接还原—磨矿—磁选工艺,对有价元素铁、锌的回收及杂质硫的脱除进行了研究。结果表明:在兰炭用量为25%,白云石用量为10%,还原温度为1 300 ℃,还原时间为35 min情况下,直接还原过程的锌脱除率为99.14%,可获得ZnO含量为79.59%的氧化锌粉,金属化球团经磨矿、磁选后,获得了铁品位为92.79%、铁回收率为88.12%、硫含量为0.08%的金属铁粉。机理分析表明,铜渣中的铁橄榄石、磁铁矿相大部分已转变为金属铁相,金属铁颗粒明显聚集长大,最大粒度超过100 μm,且与脉石矿物等存在清晰平滑的界面,有利于后续磨矿、磁选工序得到高品位的金属铁粉。  相似文献   

3.
研究了含钠添加剂强化某高硅低品位铁矿石内配碳球团的还原过程,并借助光学显微镜和扫描电镜分析了含钠添加剂掺量对内配碳球团还原行为及其强度变化的影响。结果表明:球团中配加含钠添加剂不仅可明显强化该铁矿石的还原行为,大幅度提高焙烧球团的金属化率及其磨选产品的铁品位,同时还可明显提高焙烧球团的强度,降低焙烧球团的粉化率。钠盐配加量为3%的内配碳球团在960℃下还原40 min,所得焙烧产物的金属化率为86.21%,产品铁晶粒增大、连晶增多,孔洞显著减少,结构致密,还原过程的粉化率降至2.57%;焙烧产品在磨矿细度为-0.045 mm占96.15%情况下进行弱磁选(磁场强度180 k A/m),获得的精矿铁品位为87.93%,明显优于不添加钠盐情况下的指标(金属化率为45.62%,粉化率为35.39%,精矿铁品位为58.12%)。  相似文献   

4.
针对陕西汉中某地钒钛磁铁矿金属化球团,采用锥形球磨机为湿法磨矿设备,研究了磨矿碱度对铁粉再氧化的抑制规律,考察了磁选工艺参数对磁选分离效果的影响,并采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对产物进行分析表征。结果表明,随着磨矿时间延长,矿粉颗粒逐渐降低,均匀度增大,矿物解离度提高;矿粉铁品位随着磨矿碱度提高呈现先增大后降低的趋势,在p H值为13时达59.3%。磨矿粒度-74μm为95.2%,磁选强度60 m T时获得较好的磁选效果,所得磁性精矿产物中铁品位84.9%,钒钛品位分别为0.52%和3.54%,有效实现了铁与钒钛的分离。磁性精矿产物中主要以金属铁为主,非磁性产物中主要由Fe_3Ti_3O_(10)、Fe VO_4、Ca Ti Si O_5、Mg_(1.2)Ti_(1.8)O_5等物相组成。  相似文献   

5.
以无烟煤作还原剂,经过配料、圆盘造球、转底炉直接还原和磨矿-磁选工艺流程,从国内某铜渣中回收铁、锌,先后进行了基础实验和中试研究。所得最佳还原条件为:铜渣∶无烟煤∶石灰石∶工业纯碱=100∶21.5∶10∶1,还原温度1 280 ℃,还原时间38 min;转底炉排出的金属化球团的磨选条件为:一段磨矿细度-0.074 mm粒级占75.88%,磁场强度143.31 kA/m,二段磨矿细度-0.074 mm粒级占62.89%,磁场强度95.54 kA/m。基于上述条件经过转底炉直接还原流程,金属化球团磁选得到金属铁粉TFe品位92.38%,铁回收率88.39%;布袋收尘系统所得粉尘中氧化锌含量为74.25%。机理研究表明,铜渣中的硅酸铁和磁铁矿经过转底炉还原后转变为金属铁,易于通过磨矿-磁选的方法回收。  相似文献   

6.
鄂西某鲕状赤铁矿石深度还原-弱磁选试验   总被引:1,自引:0,他引:1  
分别以取自吉林松原的烟煤和取自鞍钢的焦炭作为还原剂,对鄂西某鲕状赤铁矿石进行了深度还原-弱磁选试验研究。采用焦炭作还原剂时,在碳氧摩尔比为3.5、还原温度为1 250 ℃、还原时间为160 min、还原产物磨矿细度为-200目占88.92%的条件下,还原产物的金属化率为90.50%,弱磁选精矿的铁品位和铁回收率分别为96.47%和87.62%。采用煤作还原剂时,在碳氧摩尔比和还原温度不变、还原时间为50 min、还原产物磨矿细度为-200目占84.45%的条件下,还原产物的金属化率为91.63%,弱磁选精矿的铁品位和铁回收率分别为96.07%和88.54%。综合考虑工艺指标、能耗和还原剂成本,煤更适合作为深度还原时的还原剂。  相似文献   

7.
针对某铁品位48.92%的赤褐铁矿采用内配煤粉的方式造球, 再进行微波加热直接还原-磁选分离。研究结果表明, 微波对整个内配碳球团同时加热, 且优先加热其中的煤颗粒和铁矿物, 有助于赤褐铁矿快速分解和还原成金属铁, 此时脉石矿物温度较低, 不仅抑制了铁橄榄石等化合物的生成, 而且在热应力的作用下有利于金属化球团的磨选分离。在物料量270 g, 微波输出功率1.4 kW, 内配碳球团经62 min焙烧后温度可达1 200 ℃, 此时球团金属化率高达96.23%; 当磨矿时间20 min, 磁场强度120 kA/m时, 可获得铁品位75.83%、铁回收率91.45%的铁精矿。  相似文献   

8.
为了提高某低品位菱铁矿的铁品位,采用了煤基直接还原-磁选工艺,对菱铁矿块矿进行了焙烧条件试验。结果表明:在焙烧温度1050℃,焙烧时间100 min,菱铁矿粒度10~16 mm,煤的粒度0~5 mm,煤矿质量比1.5:1的条件下进行还原焙烧,可得到金属化率93.13%的焙烧矿;该焙烧矿在磨矿粒度为-0.074 mm 80%以上,磁场强度为0.1 T,磁选时间为15 min的条件下进行磁选试验后可得到精矿铁品位为91.11%,铁回收率为97.15%的铁粉。且-25 mm的菱铁矿块矿全粒级直接还原效果良好,焙烧矿的金属化率可达到92.6%以上,磁选后的精矿铁品位高达89.4%,回收率在93.5%。  相似文献   

9.
基于直接还原法探讨了焙烧制度对煤泥-浸锌渣冷固结球团中锌、铅挥发率和铁金属化率的影响,分析了焙烧制度对球团中含锌、铅、铁化合物相变的影响,试验确定了焙砂磨矿-弱磁选回收其中铁的工艺和效果。结果表明:在1 250 ℃焙烧90 min,可使球团中锌、铅的挥发率分别达到98.87%、95.39%,铁的金属化率达到98.66%;焙砂中未见锌、铅单质及其化合物,只存在大量的金属铁,且金属铁颗粒多数大于30 μm;焙砂采用2段磨矿、2段弱磁选流程处理,可同时获得含铁91.20%、回收率为30.32%的金属铁粉和铁品位为61.58%、回收率为50.01%的铁精矿,铁总回收率达80.33%。  相似文献   

10.
钛精矿制取富钛料新工艺   总被引:8,自引:2,他引:8  
针对攀钢钛精矿采用回转窑直接还原技术 ,借助于添加剂的催化作用 ,使钛精矿中铁氧化物充分还原并能促使铁晶粒长大 ,实现了 Fe和 Ti在磨选过程中的高效分离 ,成功地开发了钛精矿制取富钛料的新工艺。扩大试验结果表明 ,在添加剂 KS用量 5 % ,粘结剂用量 1% ,球团经70 0℃预热 15 min后 ,在回转窑“火力模型”中还原 ,其适宜工艺参数为 :高温还原温度 110 0℃ ,高温还原时间≥ 2 10 min,C/ Fe为 2 .2左右 ,填充率 2 0 %左右 ,所得钛精矿金属化球团的金属化率 >92 % ,金属化球团经破碎、磨矿、磁选 ,得到磁性物 TFe>81% ,回收率 >86 % ;富钛料 Ti O2 >74 % ,回收率 >90 %。  相似文献   

11.
为使铁坑褐铁矿石能得到高效利用,采用压球-磁化焙烧-弱磁选工艺对其进行了选矿试验,主要考察了成球条件对球团强度的影响及磁化焙烧条件和磨矿细度对铁精矿指标的影响。试验结果表明:在内配煤、水、黏结剂CMC与原矿的质量比分别为20%、10%、0.5%,压力为190 kN的条件下压球,可使球团的强度达到要求;球团在外配煤与原矿的质量比为15%、焙烧温度为900 ℃、焙烧时间为50 min的条件下磁化焙烧,焙烧矿磨至-0.074 mm占85%后进行磁场强度分别为159.2和119.4 kA/m的1粗1精弱磁选,可获得铁品位为63.55%、SiO2含量为6.38%、铁回收率为83.54%的铁精矿。  相似文献   

12.
某低品位铁矿石的矿物学特性与选矿试验研究   总被引:1,自引:0,他引:1  
较系统地研究了某低品位铁矿石的矿石性质和选矿工艺。研究结果表明,该矿石为低品位磁铁矿矿石,原矿中TFe含量为27.65%,磁性铁占有率为87.96%;采用阶段磨矿、磁选流程,控制一段磨矿细度-74μm占57.82%,粗精矿再磨细度-74μm占75.92%,最终精矿TFe品位可以达到67.07%,回收率达到86.05%;采用一段磨矿、磁选—反浮选流程,控制磨矿细度-74μm占67.56%,精矿品位可以达到66.21%,回收率达到79.97%。  相似文献   

13.
为了探究通过提高磨矿细度降低河北柏泉磁选铁精矿钛含量的可行性,采用搅拌磨细磨(超细磨)-弱磁选工艺对试样进行降钛研究,在磨矿细度d90为34.7 μm,弱磁选磁场强度为83.6 kA/m的条件下,铁精矿TFe品位可由63.39%增加到65.48%,TFe品位达到一级铁精粉要求,且TFe回收率为97.85%,但铁精矿中杂质TiO2含量仅能降低1.04个百分点。通过XRD分析以及工艺矿物学分析查明,试样中钛主要存在于钛磁铁矿中;搅拌磨细磨(超细磨)-弱磁选工艺可以脱除铁精矿中的钛铁矿和钛赤铁矿,但是钛磁铁矿与磁铁矿属于类质同象,物理化学性质非常相近,难以通过磁选分离,这是该铁精矿的钛元素难以大量脱除的原因。研究结果表明,此类岩浆岩型高钛铁精矿品质较优,但钛不能通过选矿脱除,可用作其他低钛铁精粉高炉冶炼的配料。  相似文献   

14.
以某菱铁矿石为原料,采用直接还原-弱磁选工艺,研究了焙烧温度、还原时间、碳铁质量比对还原焙烧产品金属化率的影响,以及磨矿细度、磁场强度对弱磁选指标的影响。结果表明:在还原焙烧温度为1 050 ℃,还原时间为100 min,碳铁质量比为2.3的条件下,得到铁金属化率为90.88%的还原焙烧产品;还原焙烧产品在磨矿细度为-0.037 mm占79.60%,磁场强度为79.62 kA/m下,得到铁品位为92.40%,铁回收率为96.60%的还原铁粉,可直接作为炼钢原料。  相似文献   

15.
七宝山铁尾矿还原焙烧—弱磁选回收铁试验   总被引:1,自引:0,他引:1  
江西七宝山铁尾矿成分复杂,铁品位达38.74%,主要铁矿物为针铁矿。为了高效回收其中的铁,采用还原焙烧—弱磁选工艺进行了试验研究。结果表明:提高煤粉添加量、延长焙烧时间、提高焙烧温度均有利于提高还原焙烧产物中铁的金属化率和金属铁粉的指标;在煤粉添加量为15%,还原焙烧温度为1 250℃,还原焙烧时间为60min,焙烧产物磨至-325目占58.80%,弱磁选磁场强度为88 kA/m情况下,可获得铁品位为88.80%、铁回收率为92.28%的金属铁粉。还原焙烧产物的微观分析表明:在还原焙烧初期,焙烧产物中生成了大量微细粒铁颗粒,随着还原焙烧时间的延长,细小的铁颗粒不断兼并、集聚,60 min后铁颗粒不再明显集聚、长大;随着还原温度的提高,焙烧产物中的铁颗粒显著长大,在1 250℃情况下,铁颗粒长至100μm左右;长大的铁颗粒中包裹细小脉石颗粒是造成金属铁粉铁品位难以进一步大幅度提高的主要原因。  相似文献   

16.
杨慧芬  李兆峰  付鹏  张鸽 《金属矿山》2019,48(5):177-182
罐底油泥富含饱和烃、芳香烃、沥青和胶质等多种有机组分,其中的沥青质、胶质等具有较强的粘性,为探究其冷固结铁矾渣制备球团的可能性,及其对铁矾渣中铅、锌、铁的还原与回收效果,进行了系统的工艺条件研究,并通过XRD和SEM-EDS分析了还原机理。结果表明,Fe、Zn、Pb含量分别为26.76%、6.95%和3.01%的铁矾渣,在燕山石化公司的罐底油泥、CaO、汉中锌业有限责任公司的铁矾渣质量比为40∶30∶100、成球压力为10 MPa条件下,可获得抗压强度、落下强度分别为253.33 N、7次的罐底油泥-铁矾渣生球团,经过100 ℃干燥30 min的冷固结球团的抗压强度、落下强度分别为301.67 N、8.67次;冷固结球团在1 250 ℃下直接还原90 min,铅、锌的挥发率分别达81.10 %、99.56 %,并获得铁金属化率为82.86%的焙砂;焙砂经过磨矿(74 μm占66.52%)-中磁选(477.71 kA/m)-再磨(-38 μm占90.80%)-弱磁粗选(207.01 kA/m)-弱磁精选(16.56 kA/m),获得铁品位为90.34%、回收率为14.82%的金属铁粉和铁品位为65.20%、回收率为55.54%的铁精矿,铁总回收率为70.35%。可见,罐底油泥可用作为铁矾渣冷固结球团的粘结剂和还原剂使用。  相似文献   

17.
某难选铁矿石直接还原焙烧磁选研究   总被引:3,自引:0,他引:3  
对某含铁品位为28.82%, 含磷0.35%的难选铁矿石进行了直接还原焙烧磁选研究。研究了焙烧温度、还原剂用量、焙烧时间、助溶剂用量、磨矿粒度以及磁场强度对直接还原铁品位和回收率的影响。在还原剂用量为30%, 助溶剂QK用量为20%, 焙烧温度为1 200 ℃, 焙烧时间为30 min, 一段磨矿粒度为-43 μm粒级含量达到95%以上, 二段磨矿粒度为-30 μm粒级含量达到100%, 一段磁选场强为111.5 kA/m, 二段磁选场强为95.5 kA/m的条件下, 可以获得品位为90.94%, 回收率为82.67%的直接还原铁。  相似文献   

18.
为了了解高品位铁精矿球团的预热及煤基直接还原特性,以某高品位磁铁精矿为原料,对添加有机添加剂的球团进行了预热及直接还原工艺条件研究,并对确定条件下的DRI球团进行了性能表征。结果表明:①预热球团的抗压强度随预热时间的延长和预热温度的升高而增大,要获得抗压强度为1 000 N/个的预热球团,1 100 ℃下需预热14 min。②1 100 ℃预热14 min的抗压强度为1 000 N/个的预热球团在C、Fe质量比为1.5,温度为1 100 ℃,时间120 min的条件下进行还原,可获得铁品位为94.12%、金属化率为98.64%的DRI球团。③DRI球团中仅呈现金属铁的衍射峰,中心金属铁互连紧密,金属键桥发育充分,铁晶粒粗大,球团边缘更明显,该有害元素含量极低的特极DRI是冶炼特殊钢、制备粉末冶金铁粉及高纯铁的优质原料。④预热球团具有足够的抗压强度不仅是回转窑安全运行的重要保证,而且对直接还原速率有明显影响,适宜采用1 100 ℃预热14 min抗压强度为1 000 N/个左右的预热球团。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号