首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Nanofibers and bio-nonwoven fabrics of pure cellulose can be made from some bacteria such as Acetobacter xylinum. Bacterial cellulose fibers are very pure, 10?nm in diameter and about 0.5?micron long. The molecular formula of bacterial cellulose is similar to that of plant cellulose. Its fibers are very stiff and it has high tensile strength, high porosity, and nanofibrillar structure. They can potentially be produced in industrial quantities at greatly lowered cost and water content, and with triple the yield by a new process. This article presents a critical review of the available information on bacterial cellulose as a biological nonwoven fabric with special emphasis on its fermentative production and applications. Characteristics of bacterial cellulose biofabric with respect to its structure and physicochemical properties are discussed. Current and potential applications of bacterial cellulose in textile, nonwoven cloth, paper, films, synthetic fiber coating, food, pharmaceutical, and other industries are also presented.  相似文献   

2.
Chitin is the structural material of crustaceans, insects, and fungi, and is the second most abundant biopolymer after cellulose on earth. Chitosan, a deacetylated derivative of chitin, can be obtained by deacetylation of chitin. It is a functionally versatile biopolymer due to the presence of amino groups responsible for the various properties of the polymer. Although it has been used for various industrial applications, the recent one is its use as a biodegradable antimicrobial food packaging material. Much research has been focused on chitosan-based flexible food packaging and edible food coatings to compete with conventional non-biodegradable plastic-based food packaging materials. Various strategies have been used to improve the properties of chitosan - using plasticizers and cross-linkers, embedding the polymer with fillers such as nanoparticles, fibers, and whiskers, and blending the polymer with natural extracts and essential oils and also with other natural and synthetic polymers. However, much research is still needed to bring this biopolymer to industrial levels for the food packaging applications.Industrial relevanceAs a major by-product of the seafood industry, a massive amount of crustacean shell waste is generated each year, which can be used to produce value-added chitin, which can be converted to chitosan using a relatively simple deacetylation process. Being extracted from a bio-waste product using many energy-efficient methods, chitosan is much cheaper as compared to other biopolymers. Nevertheless, the exceptional properties of chitosan make it a relatively stronger candidate for food packaging applications. Chitosan has already been used in various industries, such as biomedical, agriculture, water treatment, cosmetics, textile, photography, chromatography, electronics, paper industry, and food industry. This review article compiles all the essential literature up to the latest developments of chitosan as a potential food packaging material and the outcomes of its practical utilization for this purpose.  相似文献   

3.
红茶菌菌膜是漂浮在红茶菌饮料表面的由细菌和酵母菌在胞外形成的纤维素生物膜,具有高持水性、高机械强度、良好的热稳定性、生物相容性及可降解性等优良特性,因此在许多领域具有广阔的应用前景。作者综述了红茶菌菌膜中微生物的组成和共生关系、合成机制、红茶菌菌膜的结构和性质,以及红茶菌菌膜在食品、医疗、纺织和废水处理等领域的应用,并对红茶菌菌膜的未来应用进行了展望。  相似文献   

4.
概述了纳米纤维素的种类,包括微纤化纤维素、纳米纤维素晶体和细菌纳米纤维素,以及3种纳米纤维素的特性及其主要制备方法;重点介绍了纳米纤维素在食品领域的应用,主要包括其作为食品添加剂、功能性食品成分及食品包装材料等其他用途,并对其未来发展进行展望。  相似文献   

5.
中国酶制剂产业的现状与未来展望   总被引:2,自引:0,他引:2       下载免费PDF全文
酶是一种专一性极高的生物催化剂,广泛应用于食品、纺织、饲料、医药、造纸等行业领域。作者分析了中国酶制剂产业的发展现状及其面临的主要问题,介绍了酶制剂在食品、纺织、饲料等领域的应用,并对中国酶制剂产业的技术发展趋势进行了展望。  相似文献   

6.
微晶纤维素在食品工业中的应用研究进展   总被引:2,自引:0,他引:2  
微晶纤维素是由天然纤维素经水解至极限聚合度得到的白色粉末状物质,具有特殊的理化性质,被广泛的应用于化工、医药、食品等行业。文中主要综述了微晶纤维素的理化性质及其在食品工业中的应用,并对其发展前景进行了展望。  相似文献   

7.
Tamarind seed is an underutilized byproduct of the tamarind pulp industry. Only a small portion of the seed, in the form of tamarind kernel powder (TKP), is used as a sizing material in the textile, paper, and jute industries. Though many applications of this seed are possible, there have been hardly any other uses for it including using it as an additive in food formulations. The excellent gelling cum adhesive characteristics of the decorticated seed powder can lead to several applications in food and pharmaceutical industries which are evident by the number of research papers as well as patent applications. This article thus focuses on the possibilities of using the seed in several food and non-food industries with particular reference to physical and engineering properties, hydration behavior, rheological properties, functional and nutritional characteristics, and the processing of the tamarind seed for wider applications.  相似文献   

8.
阐述了高分子、纤维和纺织材料等功能化改性的研究进展,介绍了制备医用纺织材料的工艺技术及其产品的性能和应用。通过对高分子、纤维、纺织材料、复合材料等的化学、物理、生物等功能化改性,可以有效提高纺织材料的使用性能,开发具有高吸湿、抗菌、抗紫外、药物缓释和防护等功能的医用纺织新材料,在生物医用材料及功能性医用纺织品领域有重要的应用价值。  相似文献   

9.
ABSTRACT:  Chitosan is a modified, natural biopolymer derived by deacetylation of chitin, a major component of the shells of crustacean. Recently, chitosan has received increased attention for its commercial applications in the biomedical, food, and chemical industries. Use of chitosan in food industry is readily seen due to its several distinctive biological activities and functional properties. The antimicrobial activity and film-forming property of chitosan make it a potential source of food preservative or coating material of natural origin. This review focuses on the applications of chitosan for improvement of quality and shelf life of various foods from agriculture, poultry, and seafood origin.  相似文献   

10.
ABSTRACT: Silver ion migration and antimicrobial activity of PLA (polylactic acid-polylactide)/silver zeolite composites were investigated. Films prepared by solution-casting/solvent evaporation, or by melt-mixing/compression molding were compared. Silver migration to food simulants and TSB (tryptone soy broth) was quantified at different temperatures. Antimicrobial activity against Staphylococcus aureus and Escherichia coli was measured following the Japanese Industrial Standard JIS Z 2801. All types of PLA/silver zeolite composites released Ag+ ions. A more intense ionic exchange with the zeolites and a significant, but low, antimicrobial activity in solution were found in cast films. To attain antimicrobial effects, however, migrated ions ought to be in the range of the legal limit of 0.05 mg Ag+/kg food stated by the European Food Safety Agency (EFSA). Silver migration and antimicrobial activity were sensitive to the methodology chosen to process the PLA films, the ionic strength of the medium, and the ion motility in the polymer matrix. Practical Application: Silver exchanged zeolites incorporated in food contact polymers are gaining importance as antimicrobial agents. Migration of silver ions from polymer matrices, however, is legally restricted. Therefore a compromise between silver migration and antimicrobial activity needs to be critically analyzed to validate novel materials in food packaging applications.  相似文献   

11.
从口腔离体牙样品中筛选得到1株具有抑菌作用的贝莱斯芽孢杆菌(Bacillus velezensis)1-3。通过硫酸铵沉淀、分子筛层析、薄层层析和基质辅助激光解析电离-飞行时间质谱检测,确定具有抑菌活性的物质是含有14~16个C的环状脂肽Surfactin,其分子质量分别为1 030.642、1 044.660 Da和1 058.677 Da。通过对分离纯化Surfactin的特征研究,结果表明其具有表面活性剂的功能,对食品加工、医疗卫生、畜禽养殖中常见的病原菌具有抑制作用,其中对单核细胞性李斯特菌(Listeria monocytogenes)ATCC 19115的最小抑菌浓度可达4 μg/mL。Surfactin对小鼠红细胞在有效抑菌浓度范围内未显示溶血性,且具有良好的热稳定性(20~100℃)和广泛的pH值(2.0~10.0)适应性,表明其在食品加工、医疗卫生和畜牧养殖中具有良好的应用潜能。  相似文献   

12.
Holy basil essential oils (HBEO) can be used in many food applications due to antioxidant and antimicrobial attributes, but they are susceptible to degradation upon storage. Therefore, a protective system is required to extend their shelf life. HBEO was microencapsulated by coacervation using gelatin and the microcapsules were subsequently coated with stearic acid (1%, 2%, and 3%) in carboxymethyl cellulose emulsions. The results showed that HBEO contents decreased with increasing stearic acid concentrations from 76% to 59%. Fourier transform infrared spectroscopy analysis suggested that HBEO was stable during microencapsulation. After 3‐month storage, changes in appearance were detected in all samples, especially the uncoated and 3% stearic acid‐coated microcapsules. Additionally, the surface HBEO content increased significantly, consistent with a distinct increase in darkness and agglomeration. X‐ray diffraction analysis revealed the physical change of microcapsules, attributed to the renaturation of gelatin and recrystallization of stearic acid. The antioxidant activity of both non‐encapsulated and encapsulated HBEO after storage decreased significantly, except the microcapsule coated with 1% stearic acid (half maximal inhibitory concentration of 0.35 mg/mL), whereas the antimicrobial activity remained constant. The findings suggest that HBEO microcapsules coated with 1% stearic acid could serve as antioxidant and antimicrobial additives in food industries.  相似文献   

13.
微生物脂肪酶在工业中的应用及研究进展   总被引:13,自引:1,他引:13  
脂肪酶是工业应用中很重要的一种酶。本文对目前微生物脂肪酶在工业中的应用进行了综述,包括食品工业、纺织和化工工业、洗涤添加剂、废水处理添加剂、医药、造纸行业以及手性药物的合成等,并展望了脂肪酶的研究方向及前景。  相似文献   

14.
Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria   总被引:5,自引:0,他引:5  
Pediocin PA-1 is a broad-spectrum lactic acid bacteria bacteriocin that shows a particularly strong activity against Listeria monocytogenes, a foodborne pathogen of special concern among the food industries. This antimicrobial peptide is the most extensively studied class Ila (or pediocin family) bacteriocin, and it has been sufficiently well characterized to be used as a food biopreservative. This review focuses on the progress that have been made in the elucidation of its structure, mode of action, and biosynthesis, and includes an overview of its applications in food systems. The aspects that need further research are also addressed. In the future, protein engineering, genetic engineering and/or chemical synthesis may lead to the development of new antimicrobial peptides with improved properties, based on some features of the pediocin PA-1 molecule.  相似文献   

15.
浅析我国变性淀粉的应用现状   总被引:4,自引:0,他引:4  
介绍了变性淀粉的种类,淀粉的变性及其在食品、造纸、塑料、纺织、医疗等工业中的应用现状。  相似文献   

16.
ABSTRACT

Currently, eco-friendly products have been given great attention as the world is being polluted severely by non-biodegradable products and by-products. Different textile products have their own share in affecting the environment. This research is focused on exploring alternative bast fiber products to support the supply chain and to assess the possibility of using this fiber as a substitute to already available bast fibers. Kusha fiber was extracted and optimized from Ethiopian kusha plant stem – Girardinia bullosa (Steudel) wedd. – using caustic soda solution by varying the concentration, temperature, and time using design expert 6.0.10, quadratic model software. Tensile property, chemical composition, X-ray diffractometer (XRD), Fourier-transform-infrared spectroscopy (FTIR), fiber morphology, and thermogravimetric analysis (TGA) of the fiber were determined. Fiber characterization showed its tensile strength, and the cellulose content was equivalent to or even better than other bast fibers. Morphology of the fiber was similar to that of typical cotton with visible lumen and a slightly flat surface. Therefore, this new extracted fiber has a great potential to be used for different applications such as fiber-reinforced composites, textile furnishing, apparel, and nanocellulose extraction.  相似文献   

17.
食品级过氧化氢及其在食品工业中的应用   总被引:4,自引:0,他引:4  
过氧化氢是一种重要的无机化工原料和精细化工产品,它可作为氧化剂、漂白剂、消毒剂而广泛应用于化工、纺织、造纸、食品、医药、电子和环境保护等多种领域.食品级过氧化氢是通过提纯,去除了原材料中的有害杂质和重金属,从而得到纯度高、杂质少、稳定性好的产品,因此食品级过氧化氢具有广谱高效、无毒、无残留等特性,是一种安全、环保的消毒剂.近年来,食品级过氧化氢在食品工业中的应用越来越广泛,在纯净水、矿泉水、乳品、饮料、水产品、瓜果、蔬菜、啤酒等食品的生产过程中,常作为生产加工助剂如消毒、杀菌、漂白等使用.本文简单介绍了过氧化氢的性质及杀菌机理,综述食品级过氧化氢在食品工业中的应用、检测方法和安全性,并对其前景进行了展望.  相似文献   

18.
Polyphenols have attracted huge interest among researchers of various disciplines because of their numerous biological activities, such as antioxidative, antiinflammatory, antiapoptotic, cancer chemopreventive, anticarcinogenic, and antimicrobial properties, and their promising applications in many fields, mainly in the medical, cosmetics, dietary supplement and food industries. In this review, the latest scientific findings in the research on polyphenols interaction with the microbiome and mitochondria, their metabolism and health beneficial effects, their involvement in cognitive diseases and obesity development, as well as some innovations in their analysis, extraction methods, development of cosmetic formulations and functional food are summarized based on the papers presented at the 13th World Congress on Polyphenol Applications. Future implications of polyphenols in disease prevention and their strategic use as prophylactic measures are specifically addressed. Polyphenols may play a key role in our tomorrow´s food and nutrition to prevent many diseases.  相似文献   

19.
The nature is continually providing varied resources for creating textile materials for various applications. Although many textile fibers in the nature are provided with the fibrous kind itself it additionally offers raw materials that may be changed and formed into a filament in a way similar to the melt and solution spinning of other textile fibers. Basalt is an igneous rock, which is solidified volcanic lava. In recent years, basalt received attention as a replacement for asbestos fibers. Basalt has emerged as a contender in the fiber reinforcement of composites. Basalt fiber (BF) is capable to withstand very high temperature and can be used in high performance applications. This paper is review of state of art of knowledge of BF, the production methods, properties and its applications.  相似文献   

20.
Cellulose is the most abundant and a low‐cost biodegradable by‐product in the food and agricultural industries. Electrospun cellulosic nanofibers have remarkable physicochemical properties that make them attractive for many applications in the food sector. In this review, electrospinning is investigated as an easy method for producing nanofibers from polymers. Moreover, the most important applications of cellulosic nanofibers in food science are presented. These applications are (a) immobilization of bioactive substances such as enzymes, vitamins, and antimicrobials; (b) nutraceutical delivery systems and controlled release of materials; (c) as biosensors; (d) filtration; and (e) for reinforcing composites and in films. Finally, some potential risks of using electrospinning in food science are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号