首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
5083铝合金热压缩变流变应力行为   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟机上,当变形温度为300~500 ℃、应变速率为0.01~10 s-1、真应变为0~0.8时,采用圆柱体等温热压缩实验研究5083铝合金变形流变应力行为.通过分析流变应力指数函数中系数A、β与应变的关系,建立Zener-Hollomon参数的指数关系本构方程.运用该本构方程对5083铝合金不同应变速率、变形温度及应变条件下的流变应力进行预测,发现流变应力预测值与温升修正值吻合得相当好.  相似文献   

2.
在Gleeble-3500热模拟试验机上对圆柱体5083铝合金试样进行温度为300~500℃、应变速率为0.001~1 s~(-1)条件下的热压缩试验。对实验获得的真应力应变曲线进行摩擦修正,依据摩擦修正后的应力应变曲线计算本构方程,采用包含Zener-Hollomon参数的本构方程描述摩擦修正后的5083铝合金流变应力行为,其热变形激活能为164.17 kJ/mol。根据摩擦修正后的真应力-应变曲线绘制热加工图,随着真应变的增加,失稳区域向着高应变速率、高变形温度区域扩展,5083铝合金适宜热变形工艺参数:变形温度为400~500℃、变形速率为0.01~0.1s~(-1)与340~450℃、变形速率为0.001~0.01 s~(-1)。随着变形温度升高与应变速率降低,晶粒内位错密度减少,主要软化机制逐渐由动态回复转变为动态再结晶。  相似文献   

3.
5083铝合金热压缩变形流变应力行为   总被引:4,自引:2,他引:4  
在Gleeble-1500热模拟机上,当变形温度为300-500℃、应变速率为0.01-10 s^-1、真应变为0-0.8时,采用圆柱体等温热压缩实验研究5083铝合金变形流变应力行为。通过分析流变应力指数函数中系数A、β与应变的关系,建立Zener-Hollomon参数的指数关系本构方程。运用该本构方程对5083铝合金不同应变速率、变形温度及应变条件下的流变应力进行预测,发现流变应力预测值与温升修正值吻合得相当好。  相似文献   

4.
为了建立精确模拟6063铝合金高温流变应力的本构方程,在温度为573~773 K和应变速率为0.5~50 s-1的条件下,采用Gleeble-1500热模拟机进行等温热压缩实验。结果表明:可以采用参数Z描述温度和应变速率对6063铝合金热变形行为的影响,建立的本构方程中的材料常数(α,n,Q和A)可以表示成应变的4次多项式函数。模拟结果表明:所建立的本构方程能精确预测6063铝合金高温流变应力,因此,本构方程适合用于模拟热变形过程,如挤压和锻造,并且可以在工程应用中正确设计变形参数。  相似文献   

5.
采用Gleeble-3500型热模拟机,分析了2219铝合金在变形温度为330~450℃,应变速率为10~(-2)~10 s~(-1),统一压缩变形量为60%的条件下的热变形行为,研究了应变速率和变形温度对流变应力的影响,建立了超大型环形件用2219铝合金热变形时的本构方程和热加工图。结果表明:2219铝合金的流变应力随变形温度的升高和应变速率的降低而降低;基于应变-应变速率补偿模型建立的本构方程可以更好地预测其流变行为,实验值与预测值的相对误差的标准偏差为6. 7%,最大相对误差绝对值为18. 7%;确定了热加工最佳工艺参数区间:应变速率为10~(-2)~1. 2×10~(-2)s~(-1),变形温度为400~430℃。  相似文献   

6.
利用Gleeble-1500热力模拟试验机在温度为425~525℃、应变速率为0.01~1 s-1条件下对AA6082铝合金进行热拉伸试验,研究该合金的热变形行为。结果表明:变形温度、应变速率和应变对AA6082铝合金的流变应力影响显著,流变应力随变形温度的升高而下降,随应变速率的提高而增加;材料热变形经历了应变硬化段、稳态变形段和由损伤引起的流变应力陡降段。建立AA6082铝合金热变形统一黏塑性损伤本构模型,该模型综合考虑位错、硬化、损伤、应变、应变速率和温度等因素,借助遗传算法工具箱确定模型中材料常数。该模型能够较好地预测AA6082铝合金热变形时的流变应力,同时可以较好地描述材料的损伤演化行为。  相似文献   

7.
在Gleeble-3800热模拟机上采用等温压缩实验研究了5182铝合金在变形温度为573 K~723 K、应变速率为0. 01 s-1~10 s~(-1)、真应变为0~0. 69条件下的高温流变应力行为,建立了5182铝合金热变形的本构方程和热加工图。结果表明:5182铝合金在热变形时,其流变应力呈现出稳态流变特征,随变形温度的升高而降低,随应变速率的增加而增大,但在应变速率ε·≥1 s~(-1)高应变速率下,则出现动态软化现象;可以采用包含Z参数的双曲正弦函数关系来描述5182铝合金高温变形时的流变应力行为;最佳的热变形区域为变形温度400℃~420℃、应变速率0. 01 s~(-1)~0. 1 s~(-1)。  相似文献   

8.
对高硅铝合金光谱标准样品在应变速率为0.01~1s-1、变形温度为350~500℃条件下的热压缩变形行为进行实验研究。结果表明:高硅铝合金热压缩变形中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的增加而降低;通过线性回归分析计算出高硅铝合金材料的应变硬化指数n以及变形激活能Q,获得了高硅铝合金高温条件下的流变应力本构方程;研究工艺参数(变形温度t、应变速率ε)对晶粒尺寸的影响,确定最佳工艺参数:t=400℃,ε=0.1s-1。  相似文献   

9.
6082铝合金的高温本构关系   总被引:2,自引:0,他引:2  
韦韡  蒋鹏  曹飞 《塑性工程学报》2013,20(2):100-106
利用Gleeble-3500热模拟机,研究6082铝合金在350℃~500℃、应变速率10-2s-1~5s-1、最大变形程度60%条件下的热压缩变形行为。得到了高温下该铝合金的真应力-应变曲线。分析流变应力与应变速率和变形温度之间的关系,建立了高温热变形的本构关系。推导出包含Arrhenius项的Zener-Hollomon参数所描述的高温流变应力表达式。为减少应变的影响,建立4阶多项式对材料参数进行拟合,得到改进的本构方程,并与实验值进行对比。结果表明,应变速率和变形温度对6082铝合金流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增大而增大。该合金属于正应变速率敏感材料,合金热变形过程受热激活控制,激活能为145.977kJ/mol。  相似文献   

10.
采用热模拟实验机对5A06铝合金进行了变形温度为300,350,400,450和500℃,应变速率为0. 01,0. 1,1和10 s-1不同热变形条件下的等温压缩实验,分析了变形温度和应变速率对5A06铝合金热变形行为的影响,基于实验数据建立了5A06铝合金的Johnson Cook初始本构模型,并在此模型基础上进行了修正。研究结果表明:5A06铝合金热压缩时的热变形应力与变形温度、应变及应变速率均有关,热变形应力随着应变的增大先快速增大,然后逐步减小直至稳定,随变形温度的升高而降低,随应变速率的增大而增大;与Johnson Cook初始本构模型相比,修正后的本构模型具有更高的预测精度,更能准确地表达5A06铝合金热变形应力与热变形条件之间的关系。  相似文献   

11.
在温度为100℃~525℃,应变速率为0.008s-1、0.013s-1条件下,采用恒应变速率法研究AA5083合金板的流变行为,以及流变应力、变形温度与应变速率之间的关系。结果表明,在该条件下,AA5083合金受应变速率硬化与应变硬化共同作用;其应变速率敏感性指数随温度的升高逐渐增大,应变硬化指数随温度的升高逐渐减弱至零,而后略有增大。建立了材料基于温度变化的修正Fields-Backofen本构模型,其值与实验值吻合良好。  相似文献   

12.
采用Gleeble-3800热模拟试验机研究了变形温度350~500℃和应变速率0.01~5 s~(-1)下6082铝合金的热变形行为。结果表明:在同一应变速率下,稳态流动应力随着变形温度的升高而降低,动态回复作用大于加工硬化对应力的影响;在同一变形温度下,流动应力随着应变速率增大而增大。借助Origin软件对数据进行了回归分析,构建了6082铝合金的本构方程,并统计计算了本构方程预测流动应力值和试验值之间的平均相对误差。结果表明:平均相对误差值为0.11,本构方程能够较为准确预测材料高温流动应力随变形量增加而变化的大小和趋势。最后利用Deform-3D软件进行了热压缩试验模拟,发现模拟结果与实际结果有差异,分析了结果偏差的原因。  相似文献   

13.
在Gleeble-1500热模拟实验机上对Fe-13Cr-4Al合金进行了等温压缩实验,研究了该材料在变形温度800~1000℃、应变速率0.01~10 s~(-1)条件下的高温流变行为;构建了包含Arrhenius项同时考虑应变、应变速率及温度影响的高温热变形本构方程。结果表明,Fe-13Cr-4Al合金的高温流变应力状态主要受温度和应变速率的影响,并且在较低变形温度和低应变速率(800~900℃、0.01~0.1 s~(-1))的变形条件下呈现出动态再结晶;而在较高温度(950~1000℃)的变形条件下呈现出动态回复。材料常数Q、α、n和ln A均是应变ε的函数,采用五次多项式可拟合两者之间的关系。同时应用包含应变补偿的本构方程可预测Fe-13Cr-4Al合金在实验温度和应变速率条件下的流变应力。  相似文献   

14.
以TA1/6061铝合金双金属为研究对象,采用Gleebe-3800热模拟试验机,在变形温度为350~500℃、应变速率为0.01~1 s-1、变形量为40%的条件下进行了单向热压缩复合试验,研究了TA1/6061铝合金双金属的热变形行为,建立了TA1/6061铝合金双金属本构方程及热加工图。结果表明,TA1/6061铝合金双金属热变形过程中的流变应力随着温度的上升和应变速率的降低而减小;基于试验数据建立的Arrhenius本构方程可以有效预测特定真应变下的真应力,其相关性系数为0.99642,热变形激活能为231434 J·mol-1;基于热加工图、SEM图像和EDS线扫描图像,确定最优热加工工艺窗口为:变形温度为482~500℃,应变速率为0.011~0.192 s-1。  相似文献   

15.
通过20MnNiMo钢多组试样的热压缩实验获得应变速率为0.01~10 s-1、变形温度为1173~1473 K条件下的真应力-应变数据。结合Arrhenius双曲正弦本构方程,通过线性回归分析求解得到不同变形条件下本构模型中的热变形激活能Q,材料常数n、α及结构因子A,从而构建了用于表征20MnNiMo钢流变应力与应变量、温度、应变速率之间内在关系的本构方程。研究结果表明:20MnNiMo钢在热压缩变形过程中发生了明显的动态软化行为,流变应力水平随应变速率的增加而增加,随温度的升高而降低;流变应力的预测值与实验值较吻合,而且预测的最大相对误差仅为7.54%。  相似文献   

16.
在温度为525℃、应变速率为0.0008~0.032s-1条件下,采用等应变速率拉伸法研究了AA5083合金的流变行为,探讨了n、m值的测量方法,并建立了修正的粘塑性本构模型。结果表明:AA5083合金在该条件下流变应力随应变速率的升高而增加,表现应变速率硬化特征;各变形曲线呈现应变硬化、稳态变形及应变软化三阶段。应变硬化指数n随应变速率减小而增加,应变速率敏感性指数m随应变增加而减小,均为动态晶粒长大所致;合金应变软化表现为动态再结晶特征。模型预测值与实验值吻合良好。  相似文献   

17.
7A85铝合金热压缩流变行为与本构方程研究   总被引:1,自引:0,他引:1  
通过在Gleeble-1500热模拟试验机上进行高温压缩试验,研究了7A85铝合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的高温流变行为。研究表明,7A85铝合金在热压缩过程中发生了明显的动态回复与动态再结晶;变形抗力随温度的降低而增加,当温度低于300℃时变形抗力增加明显,同时变形抗力随应变速率的增大而增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius方程;采用线性回归方法获得了7A85铝合金高温条件下流变应力的本构方程。  相似文献   

18.
在Gleeble-3500热模拟实验机上采用高温压缩实验研究了5083铝合金在变形温度为300~500℃、应变速率为0.01~10 s~(-1)、真应变为0~0.9条件下的热变形行为。对高温压缩实验结果进行分析,修正了实验中由于摩擦和变形热效应引起的流变应力误差,得到5083铝合金修正后的真应力-真应变曲线。结果表明:在高温压缩实验过程中,摩擦和变形热效应产生的温升影响不能忽略,摩擦和温升引起应力变化的最大值分别为31.78、33.66 MPa;5083铝合金修正后的流变应力随变形温度的升高而降低,随应变速率提高而增大;应力峰值出现后,应力逐渐下降,且呈稳定的流变特性。  相似文献   

19.
采用Gleeble-3500热模拟试验机对Mg-3.0Nd-0.2Zn-0.4Zr(质量百分数,NZ30K)合金进行等温热压缩试验,变形温度范围为350~500℃,应变速率范围为0.001~1s-1。为消除变形热的影响,对高应变速率条件下的流变应力进行修正。利用修正后的流变应力数据,建立双曲正弦本构方程。双曲正弦本构方程中的常数可表达为应变的函数。利用建立的本构方程所预测的流变应力与实验结果吻合得较好,说明该本构方程可以用来预测NZ30K合金在热变形过程中的流变应力。  相似文献   

20.
6061铝合金高温拉伸流变行为   总被引:1,自引:0,他引:1  
利用Gleeble3500热模拟试验机对6061铝合金进行高温拉伸实验,研究变形温度为365℃~565℃和应变速率为0.01s-1~1s-1条件下6061铝合金的高温拉伸流变行为。结果表明,6061铝合金属于正应变速率敏感材料,流变应力随应变速率的增加而增大,随温度的增加而降低;通过线性回归分析计算6061铝合金的应力指数n及变形激活能Q,获得其高温拉伸条件下的流变应力本构方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号