首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
在10μF钽电容放电激励下,对两种阻值相当质量不同的半导体桥(SCB)和细化的发火药剂斯蒂芬酸铅(LTNR)和叠氮化铅(PbN6)所组成的发火件进行了实验研究,根据发火件的电特性变化和发火现象发现半导体桥存在电热发火、电爆发火和等离子体发火三种情况,测试了SCB/LTNR和SCB/PbN6发火件的50%发火电压和发火时间。结果表明半导体桥的发火电压阈值不仅与发火药剂有关,还与半导体桥换能元有关,所以半导体桥的设计存在最佳质量,通过对比得知LTNR比PbN6感度高,PbN6比LTNR的燃速高。  相似文献   

2.
为得到恒流激励下微型半导体桥的发火临界性,对微型半导体桥与LTNR药剂所组成发火件的电热过程进行了实验研究,得到了响应过程中电阻的变化规律.基于传热学原理,建立了微型半导体桥稳态传热时的电热换能模型,推导出临界发火电流表达式,将计算值与实验值进行了对比,证明了理论计算公式的可行性与合理性,对于微型半导体桥安全电流的设计...  相似文献   

3.
斯蒂芬酸铅的半导体桥点火试验研究   总被引:1,自引:0,他引:1  
通过对半导体桥(Semiconductor Bridge,SCB)装药条件下发火电压、发火电容及积分能量对点火时间影响的对比,结合不同点火条件下,桥体两端电压曲线、电流曲线和电流二次峰出现时间的比较,研究了斯蒂芬酸铅(LTNR)的半导体桥点火机理。试验发现特定的点火电路下,SCB点火时间存在一个临界值,且SCB等离子体形成的快慢直接影响点火时间。在充电电压从大到小的点火过程中,在桥与药剂之间存在2种不同的点火机理,在较高点火电压下为等离子体点火机理,在低电压为热点火机理。  相似文献   

4.
基于电路仿真的桥丝式电火工品静电危害预测   总被引:2,自引:1,他引:1  
为研究电火工品(EED)发火件材料对静电泄放(ESD)条件的响应规律及其在静电环境下的损伤情况,引用美国电气和电子工程师协会(IEEE)标准和Sandia实验室标准的静电放电模型,仿真和分析了不同静电高压条件放电模型的静电泄放过程。确定了放电产生的能量,与典型电火工品中的发火材料的物理形态转换特性能量进行了对比分析。推算了ESD对典型EED的损伤情况。结果表明,泄放电流峰值随静电初始电压升高而增大,但电流波形的其它参数不变。对于40μm直径的镍铬桥丝和斯蒂芬酸铅组成的发火元件,IEEE标准ESD模型在初始电压为20 k V时桥丝温度可达到焊锡熔点、药剂分解温度和燃爆点,40 k V可使桥丝熔断,而Sandia实验室标准ESD模型在20 k V时桥丝温度可达到焊锡熔点,25 k V可到达到药剂分解温度和燃爆点,50 k V达到桥丝熔点。  相似文献   

5.
为研究灼热桥丝式电火工品的脉冲激励安全性,建立了灼热桥丝式电火工品的温升数理模型,研究了灼热桥丝式电火工品的发火判据,设计了灼热桥丝式电火工品临界发火电流的计算流程,揭示了单脉冲和脉冲串电流的激励参数对灼热桥丝式电火工品临界发火电流的影响规律。结果表明,在单脉冲激励下,当脉冲宽度小于5 μs时,灼热桥丝式电火工品的临界发火能量固定,即桥药系统处于绝热状态,灼热桥丝式电火工品是否发火与桥丝输入的能量有关;而当脉冲宽度大于15 ms时,灼热桥丝式电火工品临界发火电流固定,其发火状态与桥丝的电功率有关。在窄脉冲串电流激励下,临界发火电流随重复周期变化曲线的时间常数与脉宽无关,且当重复周期大于1.25 ms时,桥药系统无热累积效应,其临界发火电流与单脉冲电流作用情况一致;而当重复周期小于1.25 ms时,桥药系统出现热累积效应,该效应导致临界发火电流随重复周期降低而迅速衰减。  相似文献   

6.
叠氮化铅半导体桥点火研究   总被引:1,自引:0,他引:1  
利用半导体桥(Semiconductor Bridge,SCB)作为发火元件点燃叠氮化铅(Lead Azide,LA),获得了其电压电流曲线,通过分析其电压电流曲线和烧蚀后的桥面,发现两种不同的点火机理:当LA的颗粒较大时(45μm),利用SCB产生的等离子体将药剂点燃;当LA的颗粒较小时(1μm),SCB不产生等离子体就可以将药剂点燃。非等离子体点火时,其发火电压约为等离子体点火时的20%,降低了SCB的点火能量。此外,压药压力对非等离子体点火的最低发火电压有一定影响,80MPa时其发火电压最低。  相似文献   

7.
针对常用薄膜换能元的沉积和成型方法耗时长、成本高、材料利用率低等问题,采用喷墨打印制备了银膜换能元,并采用扫描电镜(SEM)和原子力学显微镜(AFM)对换能元形貌及厚度进行了表征,对银膜桥的发火性能进行了研究。结果表明,银膜换能元厚度为2.1μm,表面平整,在不同输入能量下存在电热、电爆两种情况。银膜桥更容易产生等离子体;蘸有斯蒂芬酸铅(LTNR)的银膜桥在47μF脉冲放电下50%发火电压为6.65 V,脚-脚间可以耐受25 kV静电放电(放电电容为500 pF,串联5 kΩ电阻),可通过钝感电火工品1A1W5min测试。  相似文献   

8.
对电容放电和5min恒流激励时半导体桥换能元的爆发特性进行了实验研究,测试了半导体桥作用过程中电压、电流、电阻的变化规律,通过对电阻变化特点的详细分析,发现恒流激励时半导体桥存在临界爆发电流,电容放电激励时存在爆发和产生等离子体两个临界电压。然后利用D-最优化法测试了电阻约为0.8Ω、长度为80μm、宽度为380μm、厚度为2μm、V型角为90°的半导体桥的临界爆发电流、临界爆发电压和产生等离子体的临界电离电压等数据,通过加载不同的电压,得出了爆发时间与充电电压之间的规律。  相似文献   

9.
桥区参数对Ni-Cr薄膜换能元发火性能的影响   总被引:5,自引:0,他引:5  
依据GJB/z 377A-94感度试验川兰利法,对设计制作的不同桥区参数的Ni-Cr薄膜换能元进行了发火感度测试.结果显示:当桥区尺寸、形状一定时,随着桥膜厚度的增加,换能元的发火电压减小,当桥膜的厚度增加到0.9μm,换能元发火电压又有增加的趋势;当桥膜厚度、桥区形状一定时,随着桥区宽度减小,发火电压降低,但当桥区宽度小于0.10mm时,发火电压反而上升;当桥膜厚度、桥区宽度一定时,桥区长度越长,发火电压越高,而且不同桥区形状对换能元发火感度有明显的影响.  相似文献   

10.
提出一种灼热桥丝式电火工品发火可靠性设计方法。该方法首先建立桥丝升温模型和药剂温度分布模型,然后根据热量平衡方程和初选的设计参数计算药剂临界发火能量,并判断发火可靠度裕度是否满足要求,否则重新进行设计。采用该方法通过调整设计参数,计算得某电作动器的临界发火电压为4.75 V,发火可靠度裕度系数为1.2,可使产品满足要求。  相似文献   

11.
王军  李勇  卢兵  周彬  陈厚和  黄亦斌 《含能材料》2019,27(10):837-844
为了解决瞬态电压抑制二极管(TVS)用于半导体桥火工品抗静电设计的参数优化问题,采用电路模拟和试验相结合的方法,构建了电容放电发火测试电路等效模型和半导体桥PSpice电子器件模型,研究了TVS参数对半导体桥换能元电爆特性的影响。结果表明,当钽电容等效串联电阻为288 mΩ,钽电容等效串联电感为0.68μH,导线电感为40 nH和回路电阻为3.3 mΩ时,22μF/16 V电容放电发火电路的等效电路模型和实际吻合。以阻抗-能量列表模型的方式创建的半导体桥PSpice电子器件模型模拟曲线和实际曲线吻合,且模拟电爆数据偏差小于3%。模拟和试验结果表明,TVS对半导体桥电爆性能的影响程度随着其击穿电压的升高而降低。当TVS的击穿电压在8~12 V之间时,即使TVS击穿电压低于半导体桥发火电压,半导体桥仍能正常爆发,TVS击穿造成的分流导致半导体桥爆发延迟(2μs),且延迟时间随着TVS击穿电压的降低而延长。  相似文献   

12.
为研究不同掺杂元素对半导体桥电爆特性的影响规律,利用电容放电发火系统,对硼掺杂SCB和磷掺杂SCB的临界发火电压、发火时间以及发火所消耗的能量进行了测试,并做了对比分析。结果表明:在尺寸相同、掺杂浓度相同的条件下,磷掺杂半导体桥比硼掺杂半导体桥临界发火电压低;相同发火电压下,掺杂元素对发火时间的影响较小,并且磷掺杂半导体桥的发火能量比硼掺杂半导体桥的高,说明磷掺杂SCB性能优于硼掺杂SCB。  相似文献   

13.
桥丝式电火工品发火过程的数值仿真   总被引:2,自引:0,他引:2  
应用有限元分析软件ANSYS,建立了桥丝式电火工品的有限元仿真模型,对桥丝式电火工品的直流发火过程和电容放电发火过程进行了有限元分析,得出了两种情况下火工品的温度分布云图、径向温度分布曲线和桥丝与药剂交界面的温度变化曲线,并对仿真结果进行了分析讨论.  相似文献   

14.
为研究不同桥丝火工品静电放电响应的差异,采用高压静电放电模拟装置对两种典型的热桥丝和爆炸桥丝火工品进行了脚-脚电流注入式静电放电,测试获得了两种火工品50%发火电压及其桥丝50%熔断电压值,并对火工品的响应状态进行了理论计算和分析。结果表明:火工品桥丝的响应状态可根据静电放电引起的桥丝温度与其桥丝材料熔点温度值的对比来判定;爆炸桥丝和热桥丝火工品不同的起爆机理是造成其静电响应特性差异的主要原因。  相似文献   

15.
加速膛与复合飞片对集成爆炸箔起爆器性能的影响   总被引:4,自引:3,他引:1  
采用微机电系统制造技术实现了爆炸箔起爆器的集成制备。利用磁控溅射工艺和化学气相沉积技术制备了0.4 mm(L)×0.4 mm(W)×4.6μm(H)的Cu桥箔、聚氯代对二甲苯(Parylene C)(25μm)/Cu(2μm)复合飞片层;利用紫外光刻技术实现了环氧树脂干膜(SUEX)加速膛的制备,获得了厚度为0.395 mm,直径为0.40,0.56,1.00 mm的三种加速膛,且壁面垂直度均良好。通过光子多普勒速度(PDV)测试系统,研究了发火电压与加速膛尺寸对复合飞片速度的影响。进行了起爆六硝基茋(HNS)炸药的爆轰试验。结果表明,复合飞片的速度随着发火电压的增加逐渐增大;在相同发火条件下,复合飞片的速度随着加速膛直径的减小反而逐渐增加,即在同一发火条件下Ф0.40 mm的加速膛下获得的复合飞片速度最大。起爆HNS炸药的试验结果显示,发火电压随着加速膛直径的减小逐渐降低;相对于Ф1.00 mm的加速膛,Φ0.40 mm的加速膛在0.22μF电容放电条件下,发火电压降低了200 V左右。  相似文献   

16.
爆炸箔起爆器发火阈值影响因素的数值模拟   总被引:1,自引:1,他引:0  
为了研究由桥箔、飞片和加速膛所组成的换能组件对爆炸箔起爆器(EFI)发火性能的影响,达到降低发火阈值的目的,利用ANSYS/AUTODYN软件,模拟了桥箔驱动飞片起爆六硝基茋(HNS-Ⅳ)的过程。研究了桥箔厚度对飞片速度的影响,探究了桥区宽度、飞片材料(有机玻璃、陶瓷和聚酰亚胺)、飞片厚度和加速膛长度对EFI发火阈值的影响。结果表明,减小桥区宽度有利于降低爆炸箔起爆器的发火阈值。在输入电压相同的条件下,2μm厚度的桥箔驱动飞片速度最大;爆炸箔起爆器发火电压随着飞片厚度的增加先降低后增大,当厚度为10μm时发火电压最低;相比于0.225 mm、0.250 mm和0.275 mm加速膛,用0.125 mm加速膛时发火电压最低,说明减小加速膛长度有利于降低爆炸箔起爆器的发火阈值;在加速膛孔径确定的情况下,"无限型"加速膛发火电压低于"有限型"加速膛。聚酰亚胺力学性能好、发火电压低、撞击动能小,优于其它两种材料(有机玻璃和陶瓷)。  相似文献   

17.
郑伟林 《火工品》2012,(3):50-53
针对石油射孔弹目前采用的桥丝式电雷管和今后可能采用的冲击片雷管,研制了能够对二者的发火过程进行无损耗监测的高速数据采集电路,采用了一种非接触方式获取了发火过程中的电流曲线.根据所获取的电流曲线,分析了桥丝和桥箔在发火电流作用下电阻率的变化过程,以及发火电流曲线出现凹点的原因及其所代表的桥路状态,计算了电雷管的感度及其与发火电路的能量匹配关系,以指导发火电路的参数设计,为可靠性试验提供无损耗监测和发火参数认证方法.  相似文献   

18.
为了考察调制周期对反应薄膜性能的影响,采用磁控溅射技术制备了厚度为3μm,调制周期为50,150 nm和300 nm的Al/MoO3反应薄膜,采用差示扫描量热仪(DSC)探索了调制周期对Al/MoO3反应薄膜放热过程和反应活化能的影响;使用高速摄影和激光点火技术研究了三种调制周期反应薄膜的燃烧速率,通过与半导体桥和桥丝融合形成含能点火器件,考察了调制周期对电流和电压发火感度的影响。结果显示调制周期由50 nm增加到300 nm时,Al/MoO3反应薄膜燃烧速率由5.35 m·s^-1降低到1.75 m·s^-1。三种调制周期(50,150,300 nm)Al/MoO3反应薄膜半导体桥点火器件的50%电流发火电流分别为1.44,1.74 A和1.87 A;Al/MoO3反应薄膜桥丝点火器件的50%发火电流分别为0.08,0.65 A和1.02 A;将Al/MoO3反应薄膜与半导体桥和桥丝换能元结合形成点火器件,在点火间隙为1 mm的情况下,能够点燃钝感点火药硼-硝酸钾(B-KNO3)药片,提升点火系统的点火能力和可靠性。  相似文献   

19.
低温共烧陶瓷爆炸箔起爆芯片的设计、制备与发火性能   总被引:1,自引:0,他引:1  
张秋  陈楷  朱朋  徐聪  覃新  杨智  沈瑞琪 《含能材料》2019,27(6):448-455
采用低温共烧陶瓷(Low Temperature Co-fired Ceramics,LTCC)工艺实现了爆炸箔起爆芯片的一体化集成制备。采用丝网印刷的方式制备了厚度为5μm的Au桥箔(300μm×300μm);采用25μm和50μm两种厚度的生瓷片作为爆炸箔起爆芯片的飞片,设计了圆形(Ф=400μm)和方形(L×W=300μm×300μm)的两种加速膛形状的爆炸箔起爆芯片。在0.22μF电容放电条件下,研究了Au桥箔的电爆性能。通过光子多普勒测速技术分析了陶瓷飞片的速度特征及其运动过程中的形貌。结果表明,在发火电压1.8 kV下,Au桥箔的能量利用率最大;飞片的终态速度随着发火电压的增加而增大;在相同的发火条件下,飞片经方形加速膛加速后的出口速度比圆形加速膛高出106~313 m·s~(-1);另外,陶瓷飞片越厚,飞片在飞行过程中的运动形貌保持得越完整。该工艺制备的爆炸箔起爆芯片可成功点燃硼/硝酸钾(BPN)点火药,并起爆六硝基芪(HNS)炸药。LTCC爆炸箔起爆芯片(50μm厚陶瓷飞片,圆形加速膛)的最小点火电压为1.4 kV,最小起爆电压为2.5 kV。  相似文献   

20.
薄膜桥火工品的制备与性能研究   总被引:7,自引:5,他引:2  
为了提高火工品的安全性及点火可靠性,采用掩模法,利用磁控溅射技术制备了一种蝶形金属薄膜桥,在薄膜桥表面涂15~20 mg斯蒂芬酸铅(LTNR),进行了安全电流试验、抗静电试验及与桥丝的对比试验,研究了其安全性能和点火性能,并利用红外热成像技术验证其发火时桥区的热分布。结果表明,这种金属薄膜桥有良好的抗静电性能、点火性能和机械性能;薄膜桥通电时其中心最窄处热量较集中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号