首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study is the characterization of the fretting fatigue strength in a hydrogen gas environment. The test materials were a low alloy steel SCM435H, super alloy A286 and two kinds of austenitic stainless steels, SUS304 and SUS316L. The test was performed in hydrogen gas at 0.12 MPa absolute pressure. The purity of the hydrogen gas was 99.9999%. The fretting fatigue limit was defined by the fretting fatigue strength at 30 million cycles. For all materials, the fretting fatigue strength in the hydrogen gas environment increased in the short-life region. However, the fretting fatigue strength in the hydrogen gas environment decreased in the long-life region when exceeding 10 million cycles except for SCM435H, while there was no reduction in the fretting fatigue strength in air between 10 and 30 million cycles. The reduction rate was 18% for A286, 24% for SUS304 and 7% for SUS316L. The tangential force coefficient in the hydrogen gas environment increased when compared to that in air. It can be estimated that this increase is one of the causes of the reduced fretting fatigue strength found in a hydrogen gas environment. In order to discuss the extension of the fretting fatigue life in hydrogen gas observed at the stress level above the fretting fatigue limit in air, continuous measurement of the fretting fatigue crack propagation was performed in a hydrogen gas environment using the direct current potential drop method. As a result, it was found that the extension of the fretting fatigue life was caused by the delay in the start of the stable crack propagation.  相似文献   

2.
Utilisation of hydrogen is expected to be one of the solutions against the problems of exhaustion of fossil fuels and reduction of carbon dioxide emissions. Evaluation of the materials for hydrogen utilisation machines is required. The objectives of this study are the characterisation of fretting fatigue strength of low‐alloy steel SCM435H and heat‐resistant steel SUH660, and the validation of effectiveness of nitriding in hydrogen gas environment. Fretting fatigue tests were conducted up to 3 × 107 cycles. The decrease of fretting fatigue strength in hydrogen gas environment was found at the long‐life region exceeding 107 cycles. The amount of the decrease of the fretting fatigue limit at 3 × 107 cycles was 11% for SCM435H and 15% for SUH660. However, at the stress level above the fretting fatigue limit in air, the finite life in hydrogen gas increased more than that in air. The cause of extension of fatigue life was the delay of start of stable crack propagation. Fretting fatigue crack, which was smaller than 200 µm in length, consumed approximately 60% of the fatigue life in hydrogen gas environment. Fretting fatigue crack was steadily propagated after the test was started in air. Observations of the fretted surface showed that the fretting wear process in hydrogen gas environment was dominated by adhesion. Tangential force coefficient was higher in hydrogen gas environment than that in air. It is considered that the adhesion has a close relation to crack initiation in hydrogen gas environment, and as a result, the failure of specimen occurred at a lower stress level comparing the fretting fatigue limit in air. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The fretting fatigue strength of pre-strained SUS304 is reduced in hydrogen gas. The mechanism of the reduction is discussed. In hydrogen gas, local adhesion between contacting surfaces occurred and many small cracks were formed at the adhered spots. The major crack propagated from one of the small cracks. The roles of the adhesion in relation to the initiation and propagation of the small cracks were examined by a two-step environment test. When adhesion was prevented by an oxidized film, no failure of the specimen occurred. It can be presumed that the stress conditions were more severe in hydrogen gas than that in air due to local adhesion.  相似文献   

4.
The cause of the ICE train derailment, which occurred in 1998 at Eschede, was fatigue failure originating on the inside of the wheel tire. Rubber-sprung resilient wheels were used for the trailer cars. The wheel tire is mounted on the wheel disc. Thirty-four rubber pads were arranged between the wheel disc and the wheel tire. It was postulated that fretting fatigue between the rubber block and the inner side of the tire might have an influence on the initiation of the incipient crack. In order to clarify the influence of the rubber contact on the fatigue strength of the tire, fretting fatigue experiments under rubber contact conditions were performed. During the fundamental fretting fatigue test using bridge pads and small size carbon steel specimens, no typical fretting damage such as fretting wear and minute cracks were observed due to contact of the rubber. Stress conditions of the rubber-sprung wheel under vertical and lateral wheel loads were evaluated by a three-dimensional elastic stress analysis. Since the rubber is a super-elastic material, the Mooney-Rivlin model was used in the FEM calculation. It was found that the wheel tire is subjected to a cyclic stress during one revolution of the wheel and the maximum stress occurred at the center of the inner surface of the tire where the fatigue crack initiated. Fatigue strength of the wheel tire was determined by the rotating bending fatigue testing of specimens taken from the tire. It was found that the tire with an 862 mm diameter at a wheel load of 80 kN had a safety factor more than 3.5 from a fatigue limit diagram with a failure probability of 0.01. To confirm the fretting damage under the rubber contact and the result of the fatigue strength evaluation, fatigue tests of a full size wheel were made. After 20 million cycles at the wheel load of 280 kN, which was just below the endurance limit estimated by the endurance limit diagram, no fretting damage and no fatigue cracks were observed. The wheel was, however, fractured at 1.56 million cycles under the maximum load of 308 kN, which was just above the endurance limit. The estimation of the safety factor of 3.5 estimated from the endurance diagram was confirmed by the full size fatigue testing. It was concluded that there was no effect of fretting due to the rubber contact on the fatigue strength of the rubber-sprung single-ring railway wheel.  相似文献   

5.
The effect of contact pressure on fretting fatigue in solution-treated austenitic stainless steel was studied. With an increase in contact pressure, fretting fatigue life was almost unchanged at low contact pressures, however it decreased drastically at high contact pressures. At low contact pressures, stress concentration due to fretting damage occurred at the middle portion of the fretted area and the main crack responsible for failure was initiated there. At high contact pressures, concavity was formed at the fretted area without accompanying heavy wear. The main crack was initiated at the outer edge corner of the concavity which probably acted as a notch. Plain fatigue prior to the fretting fatigue test increased the fretting fatigue life at high contact pressures since the concavity formation was suppressed by the cyclic strain hardening.  相似文献   

6.
Fretting fatigue in 2XXX series aerospace aluminium alloys   总被引:1,自引:0,他引:1  
This research investigated the effects of microstructural characteristics on the fretting response in 2XXX series aerospace aluminium alloys. Fretting fatigue tests were conducted to determine the influence of slip character, alloy purity, grain structure and yield strength on fretting crack nucleation and growth. Crack length measurements and micrographs of the specimens indicated there was no significant difference in the fretting response of these alloys based on their microstructural characteristics. Results also showed that fretting caused cracks to nucleate in the first 1–5% of total life which resulted in much shorter fatigue lives. Additionally, fretting normalized the nucleation time in all alloys, eliminating the differences in intrinsic fatigue nucleation resistance. This resulted in the alloys with the highest stress-life (S–N) fatigue properties exhibiting a greater reduction in fatigue strength under fretting conditions. The total fretting fatigue life appeared to be primarily determined by the fatigue crack propagation resistance of the alloys.  相似文献   

7.
D.W. Hoeppner  G.L. Goss 《Wear》1974,27(1):61-70
Fretting fatigue studies were conducted on Ti-6Al-4V and 7075-T6 aluminum specimens cycled in axial fatigue loading at a fatigue ratio (R) of +0.1. Axial fatigue loading was applied at a frequency of 30 Hz in a laboratory environment with the fretting applied to the specimen central section through a fretting pad made of the same material as the fatigue specimen. Tests were conducted at various maximum axial fatigue loads and normal pressures.The fretting damage that occurred resulted in a significant reduction in fatigue life. The reduction in fatigue strength was greater for both materials studied in the long life region. A fretting fatigue damage threshold that results from the fretting was found to exist for both materials. At all load levels a given amount of fretting damage is required before any fatigue life reduction occurs. Presumably the damage leads to the development of cracks in the fretted areas. The concept of the fretting damage threshold is related to the development of an initial crack that causes the local stress intensity to exceed the threshold value at a much smaller number of applied cycles. Thus, the concepts of fracture mechanics are related to the “initiation” of fretting damage.  相似文献   

8.
Fretting fatigue tests for Ti–6Al–4 V alloy were conducted by use of the plate fatigue specimen with bolt-tightened shoe on both sides of the plate. It was clarified that the repeated bending stress at the contact area where fretting fatigue failure starts linearly decreased as stress over the contact area increased. Fretting fatigue crack starts from the pit where stress concentrate. The pit initiates when fretting debris were removed from the surface striation formed due to the contact slip movement. The fretting fatigue crack initiation mode was transgranular, while the fretting fatigue crack propagation mode was striation.  相似文献   

9.
Fretting fatigue behavior of the sensitized SUS304 stainless steel under a pressurized hot water at 7.3 MPa and 288 °C was investigated. The tests were carried out under a contact pressure of 100 MPa and a frequency of 20 Hz. From the experimental result, combined effect of pressurized hot water and localized high tangential stress due to fretting resulted in nucleation of intergranular crack along the outer edge of contact region at lower stress amplitudes, while a fretting fatigue crack was nucleated at the highest tangential force point independently from these intergranular cracks at higher stress amplitudes. No intergranular crack nucleation was observed for fretting fatigue at the same temperature in air. The higher stress ratio reduced the fatigue strength, where the crack tip was exposed more in corrosive environment due to the high mean stress compared to the lower stress ratio.  相似文献   

10.
Generally the fretting fatigue S-N curve has two regions: one is the high cycle (low stress) region and the second is the low cycle (high stress) region. In a previous paper we introduced the fretting fatigue life estimation methods in high cycle region by considering the wear process; with this estimation method the fretting fatigue limit can be estimated to be the crack initiation limit at the contact edge. In this paper we estimate the low cycle fretting fatigue life based on a new critical distance theory, modified for a high stress region using ultimate tensile strength σB and fracture toughness KIC. The critical distance for estimating low cycle fretting fatigue strength was calculated by interpolation of the critical distance on the fretting fatigue limit (estimated from σw0 and ΔKth) with critical distance on static strength (estimated from σB and KIC). By unifying this low cycle fretting fatigue life estimation method with the high cycle fretting fatigue life estimation method, which was presented in the previous paper, we can estimate the total fretting life easily. And to confirm the availability of this estimation method we perform the fretting fatigue test using Ni-Mo-V steel.  相似文献   

11.
Fretting fatigue tests of the extruded AZ61 magnesium alloy with the same contact material under low and high humidity were carried out to investigate basic fretting fatigue characteristics and effect of humidity on fretting fatigue behavior. Influence of contact material was also studied by using JIS S45C carbon steel contact material. Degradation of fatigue strength due to fretting was much more significant than that due to corrosion under high humidity condition. Therefore, no effect of humidity on fretting fatigue strength was found. Reduction rate of fatigue strength due to fretting for the magnesium alloy was between those of aluminum alloys and titanium alloys. Tangential force coefficient of the magnesium alloy was rather low compared to other materials such as steels, aluminum alloys and titanium alloys. Fretting fatigue strength with the S45C contact material was inferior compared to that with the same contact material. This is mainly due to higher tangential force in AZ61/S45C contact. Fretting fatigue cracks at the edge of fretting contact region were observed to nucleate in the very early stage of fatigue life, similar to other structural materials.  相似文献   

12.
钢丝微动疲劳过程中,钢丝裂纹萌生特性直接影响其裂纹扩展特性,进而制约钢丝微动疲劳寿命,因此开展钢丝微动疲劳裂纹萌生寿命预测研究具有重要意义。基于有限元法、摩擦学理论和断裂力学理论,运用Smith-Watson-Topper(SWT)多轴疲劳寿命准则建立考虑磨损的钢丝微动疲劳裂纹萌生寿命预测模型,基于多种不同的钢丝疲劳参数估算方法对钢丝的微动疲劳裂纹萌生寿命进行了预测,并探究接触载荷、疲劳载荷、交叉角度及钢丝直径等微动疲劳参数对钢丝微动疲劳裂纹萌生寿命的影响规律。结果表明:基于中值法的预测结果最接近实际值;在微动疲劳过程中,钢丝微动疲劳裂纹萌生寿命主要与接触载荷和疲劳载荷相关。通过引入微动损伤参数建立简化的适用于钢丝绳的钢丝微动疲劳裂纹萌生寿命预测模型,通过与考虑磨损的预测模型计算结果进行对比验证了该模型的准确性。  相似文献   

13.
Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations.  相似文献   

14.
A large number of research works have been devoted to fretting fatigue from both mechanical and metallurgical viewpoints. In the present paper, fracture mechanical approaches for evaluating fretting fatigue life and strength have been briefly reviewed. Furthermore, a new approach based on a singular stress field near the contact edge and on fracture mechanics has been proposed. The directions of crack initiation and propagation as well as fretting fatigue life, which have coincided with the experimental results, could be estimated according to the new approach, in which singular stress near the contact edge and mixed mode crack growth have been taken into consideration. In the application of the new method to predict the fretting fatigue behavior, there are still several problems to be clarified, which have also been discussed in detail.  相似文献   

15.
在自制的微动疲劳试验机上开展中性腐蚀环境下单根钢丝的微动疲劳实验,考察在相同接触载荷下,不同振幅对钢丝的微动疲劳行为的影响,并用扫描电子显微镜观察疲劳钢丝的磨痕和断口形貌,研究钢丝微动疲劳断裂机制.结果表明:在较大的振幅下,钢丝的微动区均处于滑移状态,而在较小振幅下,钢丝的微动区从滑移状态逐渐转变为黏着状态;磨损机制主要为磨粒磨损、疲劳磨损、腐蚀磨损和塑性变形;钢丝疲劳寿命随着微动振幅的增大而减小;钢丝的疲劳断口可分为3个区域,即疲劳源区、裂纹扩展区及瞬间断裂区.  相似文献   

16.
Fretting fatigue behavior of cavitation shotless peened titanium alloy, Ti–6Al–4V coupons was investigated using finite element method and a critical plane-based multi-axial fatigue parameter. Cavitation shotless peening (CSP)-induced compressive residual stress, which was larger at the contact surface than its counterpart from the shot peening (SP). However, compressive residual stress decreased more sharply with distance from the contact surface in CSP than in SP. Analysis using a critical plane-based multi-axial fatigue parameter demonstrated that the crack initiation would occur inside the cavitation shotless peened specimen which matched with the experimental observations. On the other hand, crack initiation would occur on the contact surface in the shot peened specimen which again was in agreement with experiments. The analysis also showed that the crack propagation part of the total fretting fatigue life was longer in the shot peened specimen than in the cavitation shotless peened specimen while the crack initiation part was almost equal from both peening methods. Therefore, CSP could not improve the fretting fatigue life/strength as much as the SP did but it improved relative to the un-peened specimen.  相似文献   

17.
Several studies have been conducted on the fretting fatigue limit characteristics of Inconel alloy tube material used in steam generators of nuclear power plants. Nevertheless, additional research on fretting fatigue crack initiation and propagation behavior is necessary in order to evaluate its fretting fatigue life more accurately. In this study, crack growth tests of fretting fatigue are conducted, and the characteristics of fatigue crack initiation and propagation are analyzed on Inconel 690 alloy. Also, plain fatigue crack growth tests are performed on the same material, and the results are compared with those of fretting fatigue crack growth tests. From both of the plain and fretting fatigue crack growth test results, the ΔK-da/dN diagrams are obtained and the crack growth rates are compared. It is found that the crack growth rate for fretting fatigue tests is faster than that for plain fatigue tests under a certain value of DK. However, over this value of DK, the crack growth rate for fretting fatigue tests becomes slower than that for plain fatigue tests due to debris which is produced by fretting and trapped in the propagated cracks. Finally, the fracture surfaces examined by an optical microscope, and the initiation angles of the oblique cracks are determined under various applied stresses. Also, the microstructure of the fracture surfaces is observed by a Scanning electron microscopy (SEM).  相似文献   

18.
带有微动磨损缺口钢丝的疲劳特性   总被引:4,自引:1,他引:4  
在自制的微动磨损试验机上进行钢丝的微动磨损试验,将微动磨损后的钢丝试样在液压伺服疲劳试验机上进行不同应力比和不同应力幅下的疲劳试验。结果表明,钢丝的微动磨损深度随微动时间和接触载荷的增加而增加,磨损缺口处的应力集中使其成为了裂纹萌生源,也使钢丝试样的疲劳寿命大大降低,微动磨损后钢丝试样的疲劳寿命和磨损深度呈反比关系。通过钢丝疲劳断口的SEM形貌分析了其疲劳断裂机制,断口对应不同的疲劳阶段,可分为裂纹萌生区、裂纹扩展区和裂纹瞬断区。  相似文献   

19.
A complete life model for the nucleation and growth of a fretting fatigue crack has been developed. The nucleation of a fretting crack is predicted by superimposing the crack growth rate experienced under fretting conditions onto S–N fatigue data for the alloy. The growth model utilizes small crack growth rate data and a fretting fatigue stress intensity factor to account for the small crack sizes and higher stresses experienced under fretting fatigue conditions. The development of the propagation model within the established fatigue crack growth code AFGROW allows this approach to be readily used by members of the aerospace industry.  相似文献   

20.
针对Ti-6Al-4V钛合金燕尾榫连接结构在不同载荷下的微动疲劳现象,采用榫形微动疲劳试验进行研究,并对裂纹萌生扩展、微动磨损及断口进行分析。结果表明,微动疲劳使构件疲劳寿命显著降低约70%;疲劳载荷对微动裂纹扩展的影响比对裂纹萌生的影响更大;微动疲劳裂纹起始于接触面边缘,与接触表面约成45°角,裂纹扩展到60~150μm后转向与接触表面垂直;微动疲劳断口形貌表面在微动磨损区具有多个裂纹源点,但只有一个主裂纹形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号