首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
研究了以季铵盐三辛基甲基氯化铵(MOTAC)为萃取剂在碱性体系条件下萃取钒的过程.考察了萃取剂浓度、有机相组成、pH值、震荡时间、相比等因素对萃取钒过程的影响.结果表明,在pH值为11.5左右条件下,有机相组成按质量比为15%MTOAC+3.5%仲辛醇+81.5%磺化煤油,相比为1∶1,震荡反应5 min,钒的单级萃取率达到90%以上;负载有机相用0.5 mol/L NaCl+1.0 mol/L NaOH溶液进行反萃,单级反萃率为95%以上.  相似文献   

2.
利用改性的季铵盐萃取剂从高碱度溶液中进行萃取钒的研究.考察了萃取剂浓度、仲辛醇浓度、料液碱度、料液初始含钒浓度、相比、振荡时间及温度对钒萃取过程的影响,并绘制了钒萃取等温曲线.结果表明:在料液碱度为1.5 mol/L、料液初始V2O5浓度为3.57 g/L,相比O/A为2/1,萃取时间为10 min,萃取温度为30℃,有机相组成为(质量分数)50%CO32-型三-十八烷基甲基氯化铵+20%仲辛醇+30%磺化煤油的条件下,钒的单级萃取率可达80%,钒的饱和容量可达5.85 g/L;在此条件下,经过5级逆流萃取,萃余液中V2O5浓度可降为0.05 g/L以下,钒萃取率达到99.4%.  相似文献   

3.
采用溶剂萃取法从含钒钨酸钠溶液中选择性萃取分离V。考察了萃取体系组成、料液初始pH值、萃取相比、振荡时间、温度等因素对萃取效果的影响,并确定了萃取级数和反萃体系,考察了萃取剂循环使用效果。实验结果表明,采用组成(体积分数)为20%N263+40%仲辛醇+40%磺化煤油的有机相体系,对初始pH值为8.70、WO3浓度为66.21g/L、V2O5浓度为11.46g/L的料液进行萃取分离V,在相比O/A为1/2.5及室温条件下,经过6级逆流萃取,V2O5萃取率达到99.90%以上,WO3的共萃率仅8.00%左右,萃余液中V2O5浓度可降至10 mg/L以下;负载有机相用1.5mol/L NaCl+2mol/L NaOH溶液反萃,在相比O/A为3/1及室温条件下,V2O5单级反萃率可达95.24%,WO3单级反萃率为100%。萃取剂在循环使用过程中对钒钨的萃取效果基本不变。  相似文献   

4.
低品位钨钽铌粗精矿碱分解液的碱性萃取清洁生产工艺有着较好的产业前景。研究了影响钨萃取效果的萃取剂浓度、极性改质剂浓度、振荡时间、振荡温度等因素。试验采用N263萃取方法分离富集钨,在料液[OH-]浓度为44.1 g·L-1,WO3浓度为132.43 g·L-1,温度为25℃,振荡时间8 min,萃取有机相组成为62%N263(500 g·L-1)+15%仲辛醇+23%磺化煤油,相比O/A=2/1的条件下,测得有机相中WO3饱和容量为122.63 g·L-1。在此条件下,经过4级逆流萃取后,萃余液中WO3浓度可降至0.35 g·L-1以下,钨萃取率达到99.7%以上。  相似文献   

5.
从废脱硝催化剂中回收有价金属钨的研究   总被引:1,自引:0,他引:1  
用碳酸钠浸出结合季铵盐萃取工艺从失效脱硝催化剂中回收钨。结果表明,在浸出条件为碳酸钠浓度100 g/L、液固比2∶1、浸出温度180℃、浸出时间3 h时,钨的浸出率可达98.5%。浸出液经过三辛基甲基氯化铵萃取、碳酸氢铵溶液进行反萃,可在水相中得到高浓度的钨酸铵溶液,并与溶解在有机相之中的Fe、K等杂质元素进行高效分离。  相似文献   

6.
研究了一种新型酸性磷类萃取剂NA萃取中重混合稀土的性能,探讨了萃取过程中有机相的皂化度、有机相组成、混合稀土料液中杂质含量、料液初始p H对新型萃取剂萃取饱和容量的影响以及反萃过程中反萃酸度对反萃性能的影响,同时还探讨了新型萃取剂的损耗率。试验结果表明,控制混合稀土料液浓度与铝浓度比≥222,与铁浓度比≥2543、有机相的皂化度0.64~0.68 mol·L~(-1)、有机相中磺化煤油∶新型萃取剂=1∶1(新型萃取剂浓度为1.45 mol·L~(-1))及混合稀土料液初始p H=1.2的工艺条件下,萃取过程分相效果好,新型萃取剂的饱和容量大于0.20 mol·L~(-1),比传统萃取剂P507的最佳萃取饱和容量高15%~20%左右,新型萃取剂的损耗率为0.42%~0.45%;反萃过程,采用盐酸作为反萃剂,只要控制盐酸浓度为3.0 mol·L~(-1)时,负载有机相的单级反萃率即可达到98%以上;研究结果表明,该新型萃取剂,具有萃取饱和容量大、溶解损失少、循环使用性能好、反萃酸度低的特点,可以大大降低槽体有机积存量、稀土积存量和酸耗量,减少投资成本,改善工作环境,具有广泛的应用前景。  相似文献   

7.
针对含砷烟尘碱浸液砷分离问题,提出CO32-型TOMAC有机相萃取硫代亚砷酸的方法.以碱浸液的模拟料液为研究对象,经硫化预处理后,测定有机相饱和萃取容量并初步探索萃取机理.考察有机相组成、相比、萃取时间及萃取温度对砷萃取分离效果影响,结果表明:有机相组成为30%CO32-型TOMAC+15%仲辛醇+磺化煤油;水相料液组成为0.5 mol/L NaOH +9.69×10-2mol/L AsIII;在室温及相比为VO/VA=1/l的条件下,AsIII单级萃取率为85.3%.经4级逆流萃取,萃余液中AsIII浓度可降至1.34×10-3 mol/L以下,萃取率可达98%以上,达到了碱性溶液有效脱砷的目的.  相似文献   

8.
提出以季铵盐碱性萃取法从含钒钨酸铵溶液中深度除V并进行实验研究,考察了有机相组成、平衡水相pH值对萃取过程的影响以及相比对反萃过程的影响。绘制了萃取及反萃等温线并进行模拟逆流串级萃取及反萃实验。结果表明,将含微量钒的钨酸铵溶液先经蒸发脱氨预处理调整溶液pH值至8.7左右,再以组分(体积分数)为1%N263+5%仲辛醇+磺化煤油的有机相,在25℃、相比1.25∶1的条件下进行6级逆流串级萃取后,水相中V含量降至10mg/L以下,W的共萃损失5%。负载有机相中的V可采用2mol/L NaOH溶液实现完全反萃,反萃后有机相可返回萃取工序连续使用。  相似文献   

9.
通过酸解作业,使黑钨精矿中的钨钪得到有效分离。适宜的酸解条件为:黑钨精矿粒度-48μm、盐酸浓度9mol/L、酸解浸出时间5h,在上述酸浸条件下钪的浸出率达到95%以上。在萃取剂组成为12%P204+煤油(O/A=1/5)+4%仲辛醇,经过一级萃取,萃取时间5min,酸解液中钪的萃取率达到95%以上,且钪和铁能较为彻底地分离。通过逆流酸洗除铁可将富钪有机相中的钪进一步富集,用2.5mol/L氢氧化钠对富钪有机相进行一级反萃,相比O/A=5,反萃时间5min,钪反萃率为99.90%。  相似文献   

10.
针对现有锗萃取剂的弊端,采用HBL101从高浓度硫酸体系中萃取锗,分别考察了料液酸度、萃取剂浓度、时间、相比、温度等因素对锗萃取及反萃的影响并绘制出等温线。结果表明,在最佳条件下,采用体积分数为15%的HBL101+磺化煤油作为有机相(相比O/A=1∶1),经过4级逆流萃取,锗萃取率可达到98.32%;负载有机相用150g/L NaOH溶液反萃(相比O/A=8∶1),经过6级逆流反萃,锗反萃率达98%以上。  相似文献   

11.
钨碱性萃取是一种钨湿法冶金清洁生产技术,所用的三辛烷基甲基氯化铵(N263)萃取剂存在转型率低、操作复杂等问题,不利于该技术的推广应用。采用自制的钨碱性萃取剂三长链烷基甲基碳酸盐(GW05),在无需转型的前提下,对Na2WO4溶液进行了萃取、反萃取和再生实验,并与N263的钨萃取性能进行了对比,取得了比较好的效果。较优的萃取条件为:油水比(O/A)2∶1,搅拌时间10 min,萃取温度20℃,料液p H值9~14。在相同的萃取条件下,GW05的单级萃钨率较N263萃取剂要高5%~10%。绘制了GW05和N263的萃取等温线,其萃钨饱和容量大致相同,分别为80.69和79.33 g·L-1。进行了串级错流萃取实验,对于WO3含量为114.28 g·L-1的Na2WO4溶液,N263在3级萃取的条件下可以达到99.78%的钨萃取率,GW05在2级萃取的条件下即可达到99.26%的钨萃取率。用2.5 mol·L-1的NH4HCO3溶液对GW05和N263萃取后所得的萃合相进行串级错流反萃取对比实验,GW05的萃合相表现出较好的反萃取性能。将GW05和N263反萃后所得有机相用1.0 mol·L-1的Na OH溶液进行再生,GW05和N263仍然具有较好的萃取性能。  相似文献   

12.
以双氧水为络合剂,采用混合萃取剂进行了高钼钨酸铵工业料液络合萃取分离钨钼的初步试验研究。试验考察了振荡平衡时间、双氧水用量、水相平衡pH值、温度等因素对钨钼萃取分离的影响,绘制了钼的萃取等温线并探索了反萃取方法。研究结果表明,该萃取体系具有良好的萃钼能力和钨钼分离性能,混合萃取剂浓度为45%的有机相对钼的饱和萃取容量达9.2 g/L,单级萃取钼钨分离系数可达50以上,NaOH溶液能有效反萃负载有机相。  相似文献   

13.
对伯胺N1923+仲辛醇萃取回收钛白废酸中的钛进行研究,着重考察搅拌速度、仲辛醇浓度、相比、反应温度、反应时间等因素对从钛白废酸中萃取分离钛铁及萃取分相的影响,探索氨水对钛反萃效果。结果表明,以20%N1923+4%仲辛醇+76%磺化煤油为有机相,在相比O/A=1∶1,搅拌速度150 r/min,反应温度30℃,时间3 min的条件下,钛的单级萃取率大于96%,共萃的铁约为4%。仲辛醇的加入可以显著降低分相时间,分相时间从23 min降至4 min。氨水可以有效反萃钛,钛的单级反萃率达到96%;钛的反萃速度快,平衡时间仅为3 min。在氮气保护下进行萃取,可以避免铁的氧化,共萃的铁可降至0.5%以下。将上述结果应用于工业钛白废酸,得到了进一步证实。因此,采用N1923-仲辛醇-煤油萃取体系从工业钛白废酸中选择性地、高效回收钛的路线是可行的。  相似文献   

14.
采用伯胺类萃取剂HBDW-201从高浓度钼酸钠溶液中选择性萃取钨,考察了有机相组成、萃取温度、接触时间、料液pH值、相比等对钨钼萃取分离的影响,探索了从负载有机相中洗脱Mo及反萃W的条件。结果表明,在有机相组成为20%HBDW-201+磺化煤油、料液含WO_330g/L左右、Mo 100g/L左右,pH值为7.55,萃取相比O/A=1.5∶1、温度25℃、接触时间10min的条件下,经过4级逆流萃取,W萃取率接近100%,Mo萃取率为13.31%,最终得到含Mo 80g/L以上的钼酸钠溶液,溶液中WO_3浓度小于5×10~(-6) g/L,实现了从高浓度钼酸钠溶液中深度除钨;采用0.6mol/L的NaOH溶液为洗涤剂,在相比O/A=5∶1,温度30℃的条件下洗涤负载有机相,Mo洗脱率为61.86%,W洗脱率为11.38%,洗水中Mo与W质量比为2.30;采用2mol/L的NaOH为反萃剂,在相比O/A=5∶1,温度30℃,接触时间10min的条件下进行反萃,W的单级反萃率达99%以上,Mo反萃率为97.39%,得到反萃液中含WO_379.67g/L,Mo 16.30g/L,可用现有的钨钼分离工艺进行进一步处理。  相似文献   

15.
采用N235+仲辛醇+磺化煤油萃取体系+氨水反萃体系对废石化催化剂萃钒余液进行钼的回收研究,考察了各因素对钼萃取率和反萃率的影响,并获得优化条件,同时对钼反萃液进行钼酸铵产品的制备。结果表明:在萃取条件为初始pH 2.0、萃取体系20% N235+5%仲辛醇浓度+75%磺化煤油、萃取相比O/A=1/5、萃取时间5 min的条件下,Mo萃取率达到99.23%;反萃条件为反萃相比O/A=5/1、氨水体积浓度15%、反萃时间3 min,Mo反萃率达到99.36%,反萃液中Mo浓度可满足沉钼要求;反萃液采用酸沉结晶法制备钼酸铵产品,钼以四钼酸铵产品析出,产品纯度为99.62%,达到了GB/T 3460—2007-MSA-3标准。  相似文献   

16.
为从硝酸溶液中将钯萃取到有机相然后直接电积金属,P.Giridhar,等研究了室温离子性液体的电化学和离子变换性能。用工业Aliquat 336离子性液体,三-n-辛基甲基氯化铵(TOMAC)和三-n-辛基甲基硝酸铵(TOMAN)研究了钯的萃取。钯在TOMAN中的分配比随硝酸浓度的升高而升高,在硝酸浓度为1.0mol/L时有最大值。相反,钯在TOMAC中的分配比随硝酸浓度的升高而连续下降。少量水和硝酸也随钯一起被萃入到有机相。  相似文献   

17.
使用新型萃取剂HBL110从红土镍矿硫酸加压浸出液中直接萃取镍,考察了萃取剂浓度、平衡pH、相比对镍萃取的影响,并绘制HBL110萃镍等温线。结果表明,在有机相体积组成为50%HBL110+50%磺化煤油,料液pH为2.5,有机相皂化率60%,相比O/A=1/1,萃取时间5min,温度30℃的条件下,镍的单级萃取率达到96%,采用相比O/A=1/2,镍的5级逆流萃取率达到99%。负载有机相使用稀酸洗涤后,按照时间10min、相比O/A=4/1、温度30℃、硫酸浓度100g/L的优化条件进行4级逆流反萃,镍反萃率达到98.5%,反萃液镍浓度达到40g/L,且反萃液杂质含量低。  相似文献   

18.
针对现行的湿法炼锌渣中提取锗的研究现状,采用新型萃取剂HBL101从锌置换渣的高酸浸出液中直接萃取锗,考察了料液酸度、萃取剂体积分数、萃取温度、萃取时间和相比对萃取的影响以及氢氧化钠质量浓度、反萃温度、反萃时间和反萃相比对反萃的影响,并对萃取剂转型条件进行了研究.实验表明:有机相组成为30%HBL101+70%磺化煤油(体积分数)作为萃取剂,料液酸度为113.2 g·L-1H2SO4,其最佳萃取条件为萃取温度25℃,萃取时间20 min,相比O/A=1∶4.经过五级逆流萃取,锗萃取率达到98.57%.负载有机相用150 g·L-1NaOH溶液可选择性反萃锗得到高纯度锗酸钠溶液,其最佳反萃条件为反萃温度25℃,反萃时间25 min,相比O/A=4∶1.经过五级逆流反萃,反萃率可达到98.1%.反萃锗后负载有机相再用200 g·L-1硫酸溶液反萃共萃的铜并转型,控制反萃温度25℃,反萃时间20 min,O/A=2∶1.经过五级逆流反萃,铜反萃率可达到99.5%并完成转型,萃取剂返回使用.   相似文献   

19.
针对钼精矿加压氧化氨浸-净化工艺所得高硫钼酸铵溶液,采用萃取法从中回收钼,考察了仲辛醇浓度、加酸量、O/A相比、振荡时间对钼萃取过程的影响。结果表明,最佳萃取条件为仲辛醇体积分数15%、1∶1硫酸添加量占料液体积10%、O/A相比1.2/1及振荡时间5 min。经单级萃取-洗涤-单级反萃,钼平均萃取率达99.61%,钼反萃率接近100%,反萃液钼平均含量为161.99 g/L、SO_4~(2-)平均含量为18 g/L,实现了钼的高效回收。  相似文献   

20.
提出并研究了N235/异辛醇体系从仲钨酸铵(APT)蒸发结晶母液中萃取回收钨的新方法,考察了有机相组成、料液pH值、温度等因素对钨萃取的影响,绘制了萃取和反萃取等温线,并进行了模拟多级逆流萃取全流程实验。结果表明,N235/异辛醇萃取体系能够从仲钨酸铵蒸发结晶母液中实现钨的高倍富集回收及其与SO_4~(2-)、Cl~-的高效分离。对于含WO_322.1g/L、pH为3.5的酸化料液,采用组成为10%N235+20%异辛醇+磺化煤油的有机相,经4级逆流萃取-1级洗涤-2级反萃取,萃余液WO_3含量低于0.02g/L,WO_3回收率高于99.5%,反萃液WO_3含量高于230g/L,SO_4~(2-)、Cl~-的去除率大于98.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号