首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 900-MHz 1-V frequency synthesizer has been fabricated in a standard 0.35-μm CMOS technology. The frequency synthesizer consists of a divide-by-128/129 and 64/65 dual-modulus prescaler, phase-frequency detector, charge pump, and voltage-doubler circuit with an external voltage-controlled oscillator (VCO) and passive loop filter. The on-chip voltage-doubler circuit converts the 1-V supply voltage to the higher voltage which supplies the prescaler internally. In this way, the 900-MHz 1-V frequency synthesizer with an external VCO can be achieved. The measured phase noise is -112.7 dBc/Hz at a 100-kHz offset from the carrier, and the synthesizer dissipates 3.56 mW (not including VCOs) from a single 1-V supply when the switching frequency of the on-chip voltage doubler is 200 kHz and the power efficiency of the voltage doubler is 77.8%. The total chip area occupies 0.73 mm2  相似文献   

2.
A /spl Delta//spl Sigma/ fractional-N frequency synthesizer for the 2-GHz-range wireless communication applications is implemented in a 0.35-/spl mu/m BiCMOS process, using only CMOS components. The synthesizer achieves a close-in phase noise of -81 dBc/Hz, while the spurious tones are at -85 dBc. The synthesizer features a multiple-modulus prescaler employing the phase-switching architecture to minimize the power dissipation. The entire prescaler, including the gigahertz-speed first stages, is implemented using full-swing logic. The current source structure employed in the charge pump provides a constant output current over a wide, almost rail-to-rail output voltage range. The power dissipation of the synthesizer chip is 22.6 mW from a 2.7-V supply.  相似文献   

3.
A fully integrated CMOS DCS-1800 frequency synthesizer   总被引:2,自引:0,他引:2  
A prototype frequency synthesizer for the DCS-1800 system has been integrated in a standard 0.4 μm CMOS process without any external components. A completely monolithic design has been made feasible by using an optimized hollow-coil inductor low-phase-noise voltage-controlled oscillator (VCO). The frequency divider is an eight-modulus phase-switching prescaler that achieves the same speed as asynchronous dividers. The die area was minimized by using a dual-path active loop filter. An indirect linearization technique was implemented for the VCO gain. The resulting architecture is a fourth-order, type-2 charge-pump phase-locked loop. The measured settling time is 300 μs, and the phase noise is up to -123 dBc/Hz at 600 kHz and -138 dBc/Hz at 3 MHz offset  相似文献   

4.
A triple-modulus phase-switching prescaler for high- speed operations is presented in this paper. By reversing the switching orders between the eight 45deg-spaced signals generated by the 8 : 1 frequency divider, the maximum operating frequency of the prescaler is effectively enhanced. With the triple-modulus switching scheme, a wide frequency covering range is achieved. The proposed prescaler is implemented in a 0.18-mum CMOS process, demonstrating a maximum operating frequency of 16 GHz without additional peaking inductors for a compact chip size. Based on the high-speed prescaler, a fully integrated integer-N frequency synthesizer is realized. The synthesizer operates at an output frequency from 13.9 to 15.6 GHz, making it very attractive for wideband applications in Ku-band. At an output frequency of 14.4 GHz, the measured sideband power and phase noise at 1-MHz offset are -60 dBc and -103.8 dBc/Hz, respectively. The fabricated circuit occupies a chip area of 1 mm2 and consumes a dc power of 70 mW from a 1.8-V supply voltage  相似文献   

5.
The design of a 2.4-GHz fully integrated /spl Sigma//spl Delta/ fractional-N frequency synthesizer in a 0.35-/spl mu/m CMOS process is presented. The design focuses on the prescaler and the loop filter, which are often the speed and the integration bottlenecks of the phase-locked loop (PLL), respectively. A 1.5-V 3-mW inherently glitch-free phase-switching prescaler is proposed. It is based on eight lower frequency 45/spl deg/-spaced phases and a reversed phase-switching sequence. The large integrating capacitor in the loop filter was integrated on chip via a simple capacitance multiplier that saves silicon area, consumes only 0.2 mW, and introduces negligible noise. The synthesizer has a 9.4% frequency tuning range from 2.23 to 2.45 GHz. It dissipates 16 mW and takes an active area of 0.35 mm/sup 2/ excluding the 0.5-mm/sup 2/ digital /spl Sigma//spl Delta/ modulator.  相似文献   

6.
A 1.41–1.72 GHz fractional-N phase-locked loop (PLL) frequency synthesizer with a PVT insensitive voltage-controlled oscillator (VCO) is presented. In this PLL, a VCO with process, voltage, and temperature (PVT) insensitive bias circuit, and a divided-by-7/8 prescaler with improved multi-phase frequency divider are adopted. A novel multi-stage noise shaping (MASH) sigma-delta modulator (SDM) is adopted here. A new combination of low-current-mismatch charge pump (CP) and a phase/frequency detector (PFD) is proposed in this paper. Using Hejian Technology CMOS 0.18 μm analog and digital mixed-mode process, a fractional-N PLL prototype circuit is designed, the VCO in the prototype circuit can operate at a central frequency of 1.55 GHz, and its phase noise is −121 dBc/Hz at 1.0 MHz, the variety of phase noise is depressed by about 1.4 dB with the help of PVT insensitive bias. Under a 1.8-V supply voltage, the phase noise of the PLL is −113 dBc/Hz at 1.0 MHz.  相似文献   

7.
An improved adaptive frequency calibration (AFC) has been employed to implement a fast lock phase-locked loop based frequency synthesizer in a 0.18 μm CMOS process. The AFC can work in two modes: the frequency calibration mode and the store/load mode. In the frequency calibration mode, a novel frequency-detector is used to reduce the frequency calibration time to 16 μs typically. In the store/load mode, the AFC makes the voltage-controlled oscillator (VCO) return to the calibrated frequency in about 1 μs by loading the calibration result stored after the frequency calibration. The experimental results show that the VCO tuning frequency range is about 620-920 MHz and the in-band phase noise within the loop bandwidth of 10 kHz is -82 dBc/Hz. The lock time is about 20 μs in frequency calibration mode and about 5 μs in store/load mode. The synthesizer consumes 12 mA from a single 1.8 V supply voltage when steady.  相似文献   

8.
射频锁相环型频率合成器的CMOS实现   总被引:4,自引:1,他引:3       下载免费PDF全文
池保勇  石秉学  王志华 《电子学报》2004,32(11):1761-1765
本论文实现了一个射频锁相环型频率合成器,它集成了压控振荡器、双模预分频器、鉴频鉴相器、电荷泵、各种数字计数器、数字寄存器和控制电路以及与基带电路的串行接口.它的鉴频鉴相频率、输出频率和电荷泵的电流大小都可以通过串行接口进行控制,还实现了内部压控振荡器和外部压控振荡器选择、功耗控制等功能,这些都使得该频率合成器具有极大的适应性,可以应用于多种通信系统中.该锁相环型频率合成器已经采用0.25μm CMOS工艺实现,测试结果表明,该频率合成器使用内部压控振荡器时的锁定范围为1.82GHz~1.96GHz,在偏离中心频率25MHz处的相位噪声可以达到-119.25dBc/Hz.该频率合成器的模拟部分采用2.7V的电源电压,消耗的电流约为48mA.  相似文献   

9.
This work presents the design and implementation of a 2.4 GHz low power fast-settling frequency-presetting PLL frequency synthesizer in the 0.18μm CMOS process.A low power mixed-signal LC VCO,a low power dual mode prescaler and a digital processor with non-volatile memory are developed to greatly reduce the power consumption and the setting time.The digital processor can automatically calibrate the presetting frequency and accurately preset the frequency of the VCO under process variations.The experiment...  相似文献   

10.
A 128-channel pulse-swallow frequency synthesizer includes a 3-mW VCO, a 2.2-mW 16/17 dual-modulus prescaler, a 9-b program counter, and a 7-b swallow counter. The circuit is fully integrated with the exception of the loop-filter capacitor. The ECL prescaler incorporates current sharing and circuit stacking techniques to reduce power consumption. Fabricated in a 1-μm, 20-GHz BiCMOS process, the circuit operates from a 3-V supply and occupies an active area of 0.28 mm2  相似文献   

11.
A 4 GHz fractional-N frequency synthesizer for wireless communications applications is implemented in a 0.35 m BiCMOS process. The synthesizer achieves a close-in phase noise of –66 dBc/Hz. The key building blocks are an ECL multiple-modulus prescaler employing the phase-switching architecture to minimize the power dissipation, a digital third-order MASH -modulator that controls the modulus of the prescaler, a very linear phase detector that enables the synthesizer to achieve a low close-in phase noise, and a chargepump providing a constant output current over a large output voltage range. The power dissipation of the synthesizer chip is 27.7 mW from a 2.7 V supply.  相似文献   

12.
使用0.18μm1.8VCMOS工艺实现了U波段小数分频锁相环型频率综合器,除压控振荡器(VCO)的调谐电感和锁相环路的无源滤波器外,其他模块都集成在片内。锁相环采用了带有开关电容阵列(SCA)的LC-VCO实现了宽频范围,使用3阶MASHΔ-Σ调制技术进行噪声整形降低了带内噪声。测试结果表明,频率综合器频率范围达到650~920MHz;波段内偏离中心频率100kHz处的相位噪声为-82dBc/Hz,1MHz处的相位噪声为-121dBc/Hz;最小频率分辨率为15Hz;在1.8V工作电压下,功耗为22mW。  相似文献   

13.
李振荣  庄奕琪  李兵  靳刚 《半导体学报》2011,32(7):075008-7
实现了一种基于标准0.18µm CMOS工艺的应用于北斗导航射频接收机的1.2GHz频率综合器。在频率综合器中采用了一种基于分布式偏置技术实现的低噪声高线性LC压控振荡器和一种基于源极耦合逻辑的高速低开关噪声正交输出二分频器,集成了基于与非触发器结构的高速8/9双模预分频器、无死区效应的延迟可编程的鉴频鉴相器和电流可编程的电荷泵。该频率综合器的输出频率范围从1.05到1.30GHz。当输出频率为1.21GHz 时,在100-kHz和1-MHz的频偏处相位噪声分别为-98.53dBc/Hz和-121.92dBc/Hz。工作电压为1.8V时,不包括输出Buffer的核心电路功耗为9.8mW。北斗射频接收机整体芯片面积为2.41.6 mm2。  相似文献   

14.
介绍了一款用于分数分频频率综合器的具有量化噪声抑制功能的小数分频器。使用4/4.5双模预分频器,将分频步长降为0.5,使带外相位噪声性能提高6 dB。ΣΔ调制器和分频器的配合使用一种非常简单的编程方式。采用同步电路消除异步分频器的抖动。采用该分频器的频率综合器在SMIC 0.18μm RF工艺下实现,芯片面积为1.47 mm×1 mm。测试结果表明,该频率综合器可以输出1.2~2.1 GHz范围的信号。测试的带内相位噪声小于-97 dBc/Hz,在1 MHz频偏处的带外相位噪声小于-124 dBc/Hz。在1.8 V的电源电压下,消耗的电流为16 mA。  相似文献   

15.
一种实现自调谐频率综合器的算法和结构   总被引:1,自引:1,他引:0  
在集成的频率综合器中 ,工艺、温度和电源电压的变化使得频率综合器产生的中心频率和频率调谐范围与期望值发生偏移。文中指出了一种自调谐频率综合器的算法和结构 ,利用特殊结构的可编程压控振荡器和自调谐算法实现宽调谐范围的频率综合器 ,进而充分涵盖期望的输出频段。用 0 2 5 μmCMOS工艺设计了一个中心频率 2 2GHz,调谐范围为 338MHz的频率综合器 ,用于IEEE80 2 11b/g无线局域网系统的超外差收发机中 ,可以充分满足标准要求的 80MHz的调谐范围 ;给出了锁定某一目标频率时自调谐算法的具体工作过程 ,结果表明该算法和结构是正确的。  相似文献   

16.
The design consideration and implementation of a CMOS frequency synthesizer for the portable hybrid global navigation satellite system are presented. The large tuning range is achieved by tuning curve compensation using an improved VCO resonant tank, which reduces the power consumption and obtains better phase noise performance.The circuit is validated by simulations and fabricated in a standard 0.18μm 1P6M CMOS process. Close-loop phase noise measured is lower than -95 dBc at 200 kHz offset while the measured tuning range is 21.5% from 1.47 to 1.83 GHz. The proposed synthesizer including source coupled logic prescaler consumes 6.2 mA current from 1.8 V supply.The whole silicon required is only 0.53 mm~2.  相似文献   

17.
A 1-V CMOS frequency synthesizer is proposed for wireless local area network 802.11a transceivers using a novel transformer-feedback voltage-controlled oscillator (VCO) for low voltage and a stacked frequency divider for low power. Implemented in a 0.18-mum CMOS process and operated at 1-V supply, the VCO measures a phase noise of -140.5 dBc at an offset of 20 MHz with a center frequency of 4.26 GHz and a power consumption of 5.17 mW. Its tuning range is as wide as 920 MHz (23%). By integrating the VCO into a frequency synthesizer, a phase noise of -140.1 dBc/Hz at an offset of 20 MHz is measured at a center frequency of 4.26 GHz. Its output frequency can be changed from 4.112 to 4.352 GHz by switching the 3-bit modulus of the programmable divider. The synthesizer consumes only 9.7 mW and occupies a chip area of 1.28 mm2.  相似文献   

18.
A 70∼900 MHz broadband PLL frequency synthesizer is developed for the single conversion DVB-C receiver in a standard 0.25 μm CMOS technology. The true 3-band VCO with a novel AAC (Auto-Amplitude Control) circuit provides a wideband amplitude stable output and a reliable startup without degrading the phase noise performance. A 16/17 dual-modulus prescaler with a new logic structure has increased the speed. The charge pump current is programmable for wide loop stabilization and phase noise optimization. The measured results show that the locked range of the frequency synthesizer is 70∼900 MHz. The worst phase noise at 1 k/10 k/100 k/1 MHz offset frequency is ordinal −65/−85/−112/−128 dBc/Hz and the spur at reference frequency is lower than −90 dBc.The frequency synthesizer chip dissipates only 16.2 mA from a 3.3 V supply.  相似文献   

19.
应用于5GHz WLAN的单片CMOS频率综合器   总被引:1,自引:0,他引:1  
采用中芯国际(SMIC)的0.18μm混合信号与射频1P6MCMOS工艺实现了WLAN802.11a收发机的锁相环型频率综合器,它集成了压控振荡器、双模预分频器、鉴频鉴相器、电荷泵、各种数字计数器、数字寄存器和控制等电路。基于环路的线性模型,对环路参数的优化设计及环路性能进行了深入的讨论。流片后测试结果表明,该频率综合器的锁定范围为4096~4288MHz,在振荡频率为4.154GHz时,偏离中心频率1MHz处的相位噪声可以达到-117dBc/Hz,输出功率约为-3dBm。芯片面积为0.675mm×0.700mm。采用1.8V的电源供电,核心电路功耗约为24mW。  相似文献   

20.
A fractional-N frequency synthesizer fabricated in a 0.13 μm CMOS technology is presented for the application of IEEE 802.11 b/g wireless local area network (WLAN) transceivers.A monolithic LC voltage controlled oscillator (VCO) is implemented with an on-chip symmetric inductor.The fractional-N frequency divider consists of a pulse swallow frequency divider and a 3rd-order multistage noise shaping (MASH) △ ∑ modulator with noise-shaped dithering techniques.Measurement results show that in all channels,phase noise of the synthesizer achieves -93 dBc/Hz and -118 dBc/Hz in band and out of band respectively with a phase-frequency detector (PFD) frequency of 20 MHz and a loop bandwidth of 100 kHz.The integrated RMS phase error is no more than 0.8°.The proposed synthesizer consumes 8.4 mW from a 1.2 V supply and occupies an area of 0.86 mm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号