首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用透射电镜、拉伸试验等手段,研究了时效温度、时效时间和预变形量对2195铝锂合金显微组织和力学性能的影响,优化了铝锂合金的时效处理工艺。结果表明:T6态和T8态铝锂合金的硬度均会随着时效时间的延长先增加后减小,经过预变形处理后铝锂合金的峰值硬度对应的时效时间缩短;随着时效时间的延长,T6态和T8态铝锂合金的抗拉强度、屈服强度和断后伸长率的变化趋势相同,经过预变形处理的T8态(预变形量5%+175℃/36 h)铝锂合金的峰值抗拉强度、峰值屈服强度和对应断后伸长率较T6态(175℃/48h)铝锂合金分别增加了11.58%、22.97%和17.78%。T6态和T8态铝锂合金中均存在颗粒状δ′相、针状θ′相、类球形δ′/β′复合相和针状T1相,且后者的T1相更加细小、数量更多、分布更加均匀。2195铝锂合金适宜的时效工艺和预变形量为175℃/36 h+5%。  相似文献   

2.
研究了热处理对挤压态2195铝锂合金组织和力学性能的影响。结果表明,固溶处理和人工时效处理对挤压合金的力学性能有显著的增强作用,这与析出相的类型、尺寸、数量密度和分布有关。2195铝锂合金在时效过程中的析出顺序为过饱和固溶体(SSSS)→GP区+δ′/β′(Al3(Li,Zr))→δ′+θ′(Al2Cu) +T1 (Al2CuLi)→θ′+T1;其中T1相在析出强化中起主导作用。2195铝锂合金经过525 ℃×60 min固溶后在170 ℃人工时效的峰时效时间是36 h,此时抗拉强度、屈服强度和伸长率分别为579 MPa、537 MPa和5.5%。  相似文献   

3.
对喷射成形2195-T4铝锂合金搅拌摩擦焊接头在205℃进行6、12、18和24 h的时效处理,采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和电子万能试验机等对接头的显微组织和力学性能进行分析。结果表明:205℃时效24 h后,接头晶粒大小和形貌无明显变化;随着时效时间的延长,焊核区与热影响区的T1、θ′、δ′相持续析出并粗化,时效12 h时,焊核区的T1、θ′、δ′相与热影响区的θ′、δ′相数量最多,热影响区T1相的数量在时效18 h时达到最大值;接头硬度与抗拉强度在时效12 h时达到峰值,此时接头平均硬度为166.7 HV0.1,抗拉强度为453 MPa,断裂方式为沿晶脆性断裂。  相似文献   

4.
利用TEM、室温拉伸等手段研究了不同时效处理制度对某新型第三代铝锂合金微观组织和力学性能的影响。结果表明:时效温度和时间对合金硬度、拉伸强度有明显影响。该铝锂合金时效的主要强化相是球状面心立方δ′相和密排六方T1相。其中δ′相是自然时效主要强化相,随着温度升高和时间延长,δ′相逐渐溶解并开始析出大量针状T1相,使合金硬度和强度显著提高,在170 ℃时效12 h强度即可达到峰值。  相似文献   

5.
采用535 ℃×2 h固溶制度,将热锻态2297铝锂合金固溶水淬后冷轧,冷轧压下量为95%,然后将轧制样品在不同温度(120~190 ℃)和时间(0~80 h)范围内进行时效处理。采用拉伸、扫描电镜(SEM)和透射电镜(TEM)等测试方法,分析时效温度和时间对铝锂合金组织与性能的影响。结果表明:时效前的大塑性变形能获得纳米结构组织,能促进T1相均匀细小地析出,缩短合金达到峰时效的时间,最终成功制备了高强高塑性铝锂合金。在120~140 ℃温区内时效时,时效温度越高,达到峰时效的时间越短、强度越高。140 ℃达到峰时效时间缩短为40 h,此时合金的抗拉强度、屈服强度和伸长率分别为525 MPa、478 MPa和7.7%,主要强化相为细小的T1相。在170~190 ℃温区内时效时,时效温度越高,达到峰时效的时间越短,但抗拉强度与屈服强度迅速下降。170 ℃时效8 h达到峰时效状态,此时合金的抗拉强度、屈服强度和伸长率分别是503 MPa、462 MPa和5.0%,主要强化相仍为T1相,但已经明显粗化。  相似文献   

6.
预变形对2197铝锂合金显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
通过力学性能测试,扫描电镜、透射电镜观察等手段,研究了固溶淬火后不同程度预变形对2197铝锂合金力学性能及显微组织的影响.结果表明:随着预变形量的增加,合金的时效响应加快,其强度达到峰值的时间逐渐缩短,且峰值强度明显提高.预变形的加入显著促进了基体中T1相的均匀、弥散析出,θ″/θ′相和δ′相析出受到抑制.  相似文献   

7.
以5.2 mm厚度2195-T8铝锂合金为对象,进行重固溶、4.5%预变形后不同温度(145C~160℃)的T8再时效处理,研究其力学性能与晶内显微组织演化。结果表明:重固溶处理后的晶粒形态与原始2195-T8态晶粒形态一样,仍然保持为拉长的带状晶粒组织。重固溶并经4.5%预变形后,再采用适当的温度和时间进行T8时效处理,2195铝锂合金可以回复到原始T8态的显微组织和力学性能,即2195铝锂合金采用重固溶-T8再时效处理不会明显损害其力学性能。2195铝锂合金的晶内时效析出相包括T1相(Al2Cu Li)、δ′相(Al3Li)、θ′相(Al2Cu)及θ″相(Al2Cu),其中优先析出相为T1相;较低温度及较短时间时效可形成较多δ′相和θ″相;随着时效时间延长,T1相生长,θ″相转化为θ′相并减少,δ′相消失;时效温度提高可促进该转变过程,加快铝锂合金的时效响应速度。  相似文献   

8.
通过拉伸测试和透射电镜分析,研究了不同时效温度下2198铝锂合金组织和性能的变化。结果发现:在峰时效之前的小温度区间内,2198铝锂合金对时效温度非常敏感,经淬火变形后在150~170℃下时效14 h,随温度的升高,强化效果显著增加,延伸率降低;观察到的2198合金的析出相相主要是δ′、θ′、β′/δ′、T1、σ相。不同时效温度下得到的析出相的种类和形貌不同,160℃以下时效,析出相以δ′、θ′、β′/δ′为主,160℃以上,以T1、σ相的为主,多种相复合强化。时效过程中析出相的种类和含量的变化是该合金力学性能对时效温度敏感的本质原因。  相似文献   

9.
对T87时效态2297铝锂合金进行中温(150℃)多向压缩直至析出相基本回溶至基体,再对其在160℃与180℃不同时间(0~48 h)条件下进行时效处理,利用透射电镜观察合金的微观组织,研究这种新型热处理工艺对2297铝锂合金组织与力学性能的影响。结果表明:时效温度为160℃时,时效48 h合金的主要析出相为δ'相,与固溶时效工艺相比,析出相析出时间延长。时效温度为180℃时,48 h合金的主要析出相为θ'相、T1相和少量δ'相。与固溶时效工艺相比,强变形固溶时效工艺增强了合金的综合力学性能。  相似文献   

10.
一种2050铝锂合金薄板的微观组织与力学性能   总被引:1,自引:0,他引:1  
通过力学性能测试和微观组织观察研究了不同热处理工艺对一种2050铝锂合金薄板力学性能和组织结构的影响。结果表明:2050铝锂合金主要强化析出相为T1相和θ′相,并可能存在少量S′相析出。在T6态(175℃)、T8态(6%预变形+155℃)时效时合金具有不同的时效析出特征;相比于T6态时效,由于时效前预变形的引入,T8态时效时合金中T1相和θ′相析出密度提高,尺寸减小,其对应的强度及延伸率均提高,T8峰时效(32 h)时σ_b、σ_(0.2)和δ分别为531MPa、488 MPa和11.4%。T8态时效(155℃/32 h)时,2%~10%预变形均可促进T1相形核,2%~6%预变形可促进θ′相形核,过大的预变形(如10%)并不能促进θ′相进一步形核,但可显著抑制θ′相长大。  相似文献   

11.
研究时效前预拉伸对Al-Cu-Mg-Ag合金析出相和力学性能的影响。结果表明:165℃时效前的预拉伸可提高合金的峰值硬度及强度,延长峰值时效的时间;合金的主要强化相是Ω相和θ′相,预拉伸引入的位错抑制了Ω相的析出与长大,细化Ω相的尺寸,同时促进θ′相的析出;时效前未经变形时,合金出现峰值的时间是10h,对应的σb为492MPa;时效前经4%预拉伸变形后,合金出现峰值的时间是18h,对应的σb为508MPa。  相似文献   

12.
采用硬度测试、拉伸性能测试、DSC分析和透射电镜(TEM)等方法研究不同时效制度对2A97铝锂合金组织和性能的影响。结果表明:采用165℃人工时效时,峰值强度最高,但其塑性也最差,且达到峰值的时间长达60 h;200℃人工时效时,达到峰值的时间缩短为6 h,而其峰值强度和塑性均很差;(200℃,6 h)十(165℃,6 h)双级时效优化后,可获得比200℃峰时效更高的强度,其抗拉强度为545 MPa,只比165℃峰时效强度低11 MPa,伸长率却提高至7.1%,且时效时间比165℃峰时效时缩短了48 h。2A97铝锂合金峰时效状态下的析出相有T_1(A1_2CuLi)相、θ′相和一定量的σ(Al_5Cu_6Mg_2)相。根据不同升温速率下的DSC曲线,采用Kissinger法求得T_1相的析出激活能为75.9 kJ/mol。综合分析可知,采用(200℃,6 h)+(165℃,6 h)双级时效可以得到比单级时效更加优异的综合性能。  相似文献   

13.
对新型铝锂合金进行不同工艺固溶处理+ 165℃×20 h单级人工时效,研究固溶温度和时间对新型铝锂合金组织和性能的影响.结果表明,随固溶温度的升高,合金弥散析出的第二相不断长大,新型铝锂合金的抗拉强度和屈服强度有所提升,塑性、韧性下降;固溶时间对合金强度和塑性的影响较小.535℃×30 min固溶处理后,综合力学性能较好.  相似文献   

14.
通过测定时效硬化曲线和室温拉伸性能,研究了时效的温度和时间对8090铝合金组织和力学性能的影响。结果表明,合金性能的变化主要归因于δ相颗粒尺寸的变化和S′相的析出。δ′相与δ′相共同析出可改善合金的强度和塑性,其最佳时效条件为190℃/25h。  相似文献   

15.
研究了不同预轧制变形时效对固溶态2055铝锂合金组织和力学性能的影响。结果表明,对固溶2055铝锂合金在时效前进行预轧制变形可显著缩短峰值时效时间、提高合金硬度和强度。当预轧制变形量为0、3%和10%时,2055铝锂合金分别在155℃下时效40、30和28 h达到峰值硬度(HV),分别为207.66、215.31和220.07。10%预轧制+155℃×28 h峰时效合金的屈服强度、抗拉强度分别达到562.64 MPa和622.04 MPa,比未预轧制、3%预轧制峰时效合金分别提高了67%、21%和43%、8%,大塑性变形诱导高密度位错促进析出相大量均匀弥散析出是其力学性能提高的主要原因。  相似文献   

16.
2A97铝锂合金双级时效研究   总被引:1,自引:0,他引:1  
通过TEM分析和常规力学性能测试,研究双级时效工艺对2A97铝锂合金组织和性能的影响,以优化合金强度和塑性匹配。结果表明:随预时效温度升高,双级时效基体由形成θ′/θ″相和δ′相为主的组织转变为形成T1相、θ″/θ′和δ′相为主的组织。135℃预时效、双级时效基体形成大量细小的θ′/θ″相和δ′相,T1数量少。晶界和亚晶界T1数量多,尺寸小,晶界和亚晶界θ′/θ″无析出带宽度窄。155℃预时效、双级时效可在基体形成以T1相为主的组织,且数量多,尺寸大,均匀分布,T1相、θ″/θ′和δ′相的联合强化作用使合金具有高的强度。  相似文献   

17.
2A97铝锂合金时效行为研究   总被引:5,自引:0,他引:5  
通过DSC、XRD、TEM、硬度测试和拉伸测试等手段,研究了2A97铝锂合金时效组织和性能变化.结果表明:2A97合金淬火后在165℃时效18 h的显微组织以θ″/θ′和δ′相为主,出现了大量分布不均匀T1相.在165℃时效,随时间延长,T1数量密度增加,平均长度减小,δ′数量密度增加,θ′数量密度和长度增加.在165℃时效18 h得到较高的强度和塑性.淬火变形后于135℃时效的组织以细小θ″/θ′、T1和δ′为主,T1和θ″/θ′数量明显高于未变形时效组织.淬火变形后于135℃时效36 h的强度明显提高,σ0.2,σb和δ5分别为441 MPa,519 MPa和7.4%.  相似文献   

18.
时效制度对2A97铝-锂合金组织和性能的影响   总被引:1,自引:1,他引:1  
通过拉伸测试和透射电镜分析,研究时效温度和时间对2A97铝锂合金组织和性能的影响。结果表明:经淬火后分别在135℃和155℃时效,随着时效温度升高,2A97合金强度升高,达到峰值强度的时间提前,延伸率降低;随着时效时间延长,合金屈服强度升高,抗拉强度则先升高而后降低,出现峰值强度,延伸率下降;当合金在155℃时效36 h,获得最佳强度和塑性匹配,抗拉强度为500 MPa,屈服强度为413 MPa,延伸率为7%;随着时效温度升高,合金组织中T1(Al2CuLi)相数量增加;135℃的过时效合金显微组织主要为θ′/θ″(Al2Cu)相和δ′(Al3Li)相,155℃的时效合金显微组织主要为T1相、θ′/θ″相和δ′相。  相似文献   

19.
采用光学显微镜、扫描电镜、能谱仪及X射线衍射仪等微观分析手段,研究不同热处理工艺条件下2195铝锂合金电子束焊接头焊缝区的显微组织演变,探讨接头的焊后热处理强化机制。结果表明,焊后热处理可显著改善接头区域的显微组织,促进强化相的析出,有利于提高接头的力学性能。经过焊后固溶+双级时效热处理,焊态下接头熔合线附近存在的等轴细晶区消失,β′、θ′和T1等强化相在接头焊缝区析出,与单级时效处理工艺相比,双级时效处理的析出强化效果更为显著。力学性能测试表明,经过双级时效热处理后,接头的抗拉强度达到492.5 MPa,为母材强度的90.4%。接头拉伸断口表面存在许多小韧窝,并伴随出现解理面,接头呈韧-脆混合型断裂特征。  相似文献   

20.
通过室温拉伸试验、热稳定化试验、扫描电镜(SEM)以及透射电镜(TEM)等方法对人工时效状态下新型高强韧铝锂合金厚板室温拉伸性能、热稳定性、断口形貌以及微观组织进行了研究。结果表明,合金进行室温拉伸试验时,厚板T/2厚度位置处的强度和伸长率均高于T/4厚度位置,这是由于板材进行轧制变形时,T/2厚度位置处变形量较大,位错密度更高,后续时效处理时会析出更多的强化相;稳定化时间一定时,随稳定化温度的升高,合金强度先增加,稳定化温度超过175℃后,强度逐渐降低,合金的热稳定性主要取决于稳定化处理后析出相的变化,稳定化温度低于150℃时,T1相具有较好的耐热性,析出相的尺寸和数量变化较小,稳定化温度进一步升高后,T1相数量逐渐减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号