首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高压水雾化法制备MIM不锈钢粉末工艺研究   总被引:1,自引:0,他引:1  
利用水雾化法制备不锈钢粉末,并研究了漏嘴内径和雾化压力对粉末形貌、氧含量、粉末粒度分布以及振实密度的影响。采用激光粒度分析仪、扫描电子显微镜对样品进行表征。结果表明:当水雾化压力为115 MPa、漏嘴内径为3.5 mm时,可制备出平均粒径较小且分布均匀(D50为8.83μm,D90为20.80μm),氧含量较低,振实密度高的不锈钢细粉。  相似文献   

2.
采用改性剂对ZrO2粉末进行表面改性处理制备出了有机/无机包覆的氧化锆陶瓷粉末.用红外光谱表征了粉末颗粒表面官能团的变化,讨论了表面改性对粉末的极性、粒度、安息角、松装密度和振实密度以及对注射成形工艺的影响.研究结果表明:改性剂分子与粉末颗粒表面吸附的羟基发生了Lewis酸碱反应,并形成了包覆吸附;通过表面改性,粉末由极性粉末变为非极性粉末,在环己烷溶液中的粒度由4.88μm减小到0.64μm,团聚系数由41降到5,团聚明显降低,粉末安息角由68°降低到45°,松装密度由0.8g/cm3增加到1.32g/cm3,振实密度由1.45g/cm3增加到2.52g/cm3;表面改性降低了氧化锆注射料的粘度、混料温度、注射温度和注射压力,改善了成形性,装载量从53%提高到58%.  相似文献   

3.
通过选用气雾化及水雾化两种工艺方法制备的不锈钢粉末来制取粉末烧结多孔材料。探讨了粉末形状及松装密度对不锈钢粉末烧结多孔材料制造工艺中的成形压力和烧结温度等工艺参数的影响;研究了原料粉末松装密度对不锈钢粉末烧结多孔材料的透气性、拉伸强度的影响。结果表明:成形压力、烧结温度和制品的透气性受粉末松装密度影响显著。粒度范围为0.18~0.90mm时,气雾化粉末的成形压力比水雾化粉末要高近1倍;当粉末的粒度相同时,采用松装密度大的球形粉末所需的烧结温度比松装密度小的不规则粉末的高60~70℃;粒度为0.45~0.60mm时,选用松装密度为4.13 g/cm3粉末所制备的多孔制品的透气性为3.16×10-10m2,而选用松装密度为2.67 g/cm3的粉末所制备的多孔制品的透气性仅为8.8×10-11m2。不锈钢多孔材料的强度受原料粉末的松装密度影响显著;粒度相同,制备工艺相同时,采用较低松装密度的粉末的制品,能够得到较高的强度。  相似文献   

4.
采用真空熔炼气雾化工艺制备3D打印用316L不锈钢粉末,通过调整雾化参数,研究了不同雾化压力对粉末化学成分、粒度分布、球形度、表面形貌、流动性及松装密度等特性的影响。结果表明:在保温温度(1560±20)℃、保温时间20 min、漏包温度(1050±30)℃、高纯氮气雾化及雾化压力3.0 MPa工艺参数下,制备得到的粉末性能可达到氧含量(质量分数)0.08%、中位径31.39μm、球形度0.75、流动性21.56 g/(50 s)及松装密度3.88 g/cm~3,基本满足不同金属3D打印技术对粉末材料性能的要求。  相似文献   

5.
对平均粒径为65.71μm和9.57μm的316L不锈钢水雾化粉及其混合粉末进行注射成形,探讨在粗粉末中加入细粉末对混合粉末的烧结致密化过程和力学性能的影响。结果表明,在粗粉末中加入25%(质量分数)的细粉末,可以提高粗粉末的烧结活性;烧结样密度达到理论密度的95%,抗拉强度达498MPa,屈服强度达192MPa,伸长率为52%,硬度为HRB60,即在粉末成本增加不多的基础上,力学性能大大超过了单一粗粉末烧结样,基本达到了美国MPIF关于316不锈钢注射成形烧结件的性能标准,为316L不锈钢粉末注射成形较大尺寸件提供了一条可行途径。  相似文献   

6.
气雾化参数对316L不锈钢粉末粒度的影响   总被引:1,自引:0,他引:1  
利用自行研制的超音速气雾化喷嘴制备316L不锈钢粉末,研究雾化压力、金属熔体质量流量及熔体过热度对粉末粒度的影响。结果表明,实验制备的316L不锈钢粉末粒度主要分布在5~70μm之间,平均粒径为19.4~26.9μm。提高雾化压力,减小金属熔体质量流量或增大熔体过热度均使粉末平均粒径减小,细粉收得率增加;最佳雾化参数为雾化压力5.5 MPa,金属熔体质量流量4.28 kg/min,熔体过热度300 K。在此条件下得到的粉末形貌主要为球形和近球形,部分粉末表面有卫星球或凹坑出现。  相似文献   

7.
对平均粒度分别为65.71μm, 26.69μm和19.25μm的3种较粗(相对于一般注射成形用细粉而言)水雾化316L不锈钢粉末进行了注射成形, 讨论了粉末粒度对金属注射成形烧结件性能, 如烧结密度、孔隙形貌、金相组织和力学性能的影响。结果表明, 只要工艺控制得当, 三种粗粉末都能用于金属注射成形, 且可得到比细粉更小和更稳定的烧结收缩率, 较高的密度, 较好的拉伸强度、屈服强度、硬度等力学性能。其中平均粒径为19.25μm粉末的烧结样品的力学性能为: 抗拉强度506 MPa、屈服强度193 MPa、延伸率54%、硬度HRB61, 达到并超过了美国MPIF关于316L不锈钢细粉末注射成形烧结件的性能标准值。  相似文献   

8.
本文采用粉末冶金工艺合成制备出316L不锈钢/铜复合材料,其中铜占20%(质量分数,下同)。测定了材料的密度、硬度和冷轧轧下量,分析了材料的显微组织和微区成分。实验结果表明,添加20%铜的不锈钢经1 100℃烧结后,密度达到7.53 g/cm3,相对密度为92.4%,硬度为75.12 HRB,冷轧轧下量达69%,316L不锈钢粉末颗粒外形球形化,铜元素在不锈钢基体有少量扩散。本文还对游离铜提高材料冷轧轧下量的原因进行了简单的分析。  相似文献   

9.
316L不锈钢粉末温压与模壁润滑的高密度成形   总被引:1,自引:0,他引:1  
通常在室温下,用内润滑厅式难以将316L不锈钢粉末压制成高密度生坯。本工作研究了316L不锈钢粉末的温压、模壁润滑和同时使用温压与模壁润滑的压制过程。研究发现:(1)模壁润滑和温压的同时使用可大幅度提高316L粉末的模压生坯密度。(2)复合润滑剂比单质EBS蜡更适用于有模壁润滑的温压过程,在工业常用的压制压力下,粒度〈74μm的316L粉末的生坯密度超过7.4g/cm^3。(3)316L粉末的高密度成形使得粉末颗粒强烈塑性变形,出现了晶粒内的亚晶结构。(4)同时使用模壁润滑和温压得到的高密度生坯在烧结过程不会发生体积膨胀,烧结密度超过7.56g/cm^3。  相似文献   

10.
采用电极感应熔炼气雾化工艺,在3.5~7.0 MPa压力下制备高品质球形TC4合金粉末,利用激光粒度仪、扫描电镜、霍尔流速计、真实密度仪等,研究雾化压力对粒度53μm的细粉收得率、平均粒径、微观形貌、空心粉以及松装密度和流动性的影响。结果表明:在3.5~6.0 MPa压力范围内,随雾化压力增大,粉末的平均粒径逐渐减小,细粉收得率增加。当雾化压力为3.5 MPa时,粉末球形度较好,卫星球较少,平均粒径为69.4μm,细粉收率为23.0%,相对密度为99.1%,松装密度为2.40 g/cm~3,流动性为22.4 s/50 g。当雾化压力提高到6.0 MPa时,TC4合金粉末的平均粒径为48.6μm,细粉收得率为40.8%。进一步增大雾化压力时,粉末的平均粒径反而变大,细粉收得率降低,卫星球颗粒逐渐增多,球形度变差。粉末松装密度和流动性都随雾化压力增大而降低。  相似文献   

11.
以硝酸银为前驱体, 抗坏血酸为还原剂, 单宁为分散剂, 采用液相化学还原法制备了微纳米超细银颗粒。通过X射线衍射仪、扫描电子显微镜、激光粒度分析仪、振实密度仪及太阳能性能测试仪等设备研究了反应物浓度、分散剂剂量、pH值等工艺参数对银颗粒形貌、平均粒径及振实密度的影响。结果表明, 当硝酸银浓度为0.1mol·L-1, 抗坏血酸浓度为0.1mol·L-1, 单宁浓度为0.01mol·L-1, pH值为1, 反应温度为25℃时, 能够获得分散性良好的球状银颗粒; 将平均粒径为1.16μm和0.66μm的两种银粉按照一定质量比进行混合, 制备得到的混合银粉最高振实密度可达到6.1g·mL-1; 通过研究基于不同振实密度银粉的银电极表面形貌和电池性能, 可以得出基于振实密度6.1g·mL-1混合银粉所制的银电极相对密度最好, 太阳能电池的光电转换效率最高, 达到17.16%。  相似文献   

12.
研究了添加青铜粉对316L烧结不锈钢的密度、硬度和微观组织的影响。结果表明:添加青铜粉末提高了316L不锈钢的生坯密度。烧结样品的密度和硬度均随青铜粉体积分数的增大而提高,烧结温度升高也有利于316L烧结不锈钢密度和硬度的增大,最佳烧结温度为1200℃左右。当青铜粉的体积分数为30%、烧结温度为1200℃时,316不锈钢的最大相对密度和硬度分别为95.1%和HRB83。添加青铜粉引起的液相烧结使不锈钢颗粒球形化趋势明显,颗粒表面平直化。  相似文献   

13.
对气雾化和水雾化316L不锈钢粉末进行注射成形和烧结,对烧结体的耐蚀性进行了测试和评价。结果表明通过控制烧结气氛,优化烧结温度,可以使烧结体具有较低的氮氧含量和较高的烧结密度,从而获得良好的耐蚀性。用5%HCl浸泡腐蚀和Ferroxyl腐蚀评级方法评定烧结不锈钢的耐蚀性,研究结果表明烧结水雾化316L不锈钢耐蚀性优于气雾化316L不锈钢。阳极极化曲线表明水雾化316L不锈钢烧结体在浓度为0.05 mol/L的硫酸中发生钝化,维钝电流约为10-4A/cm2。  相似文献   

14.
以AgNO3溶液为原料、柠檬酸为添加剂,在空气气氛下采用溶液雾化热分解法制备超细银粉.采用扫描电镜、激光粒度仪、振实密度测试仪、X射线衍射仪等对银粉进行了表征,系统地研究了反应温度、硝酸银溶液浓度、硝酸银溶液pH值、压缩空气流量、柠檬酸用量等工艺条件对产物银粉形貌、振实密度和平均粒径的影响.结果表明:在反应温度为700 ℃、硝酸银溶液浓度为2.0 mol/L、柠檬酸的添加量为2.5 %(摩尔比)、压缩空气流量为1.0 m3/h、硝酸银溶液pH值为6.0的条件下,可制备得到物相单一、表面光滑、分散性好的球形银粉,银粉的振实密度为4.24 g/cm3,平均粒径为3.16 μm.   相似文献   

15.
采用真空旋转电极气雾化法(EIGA)制备激光3D打印用TC4钛合金球形粉末,利用SEM、XRD、EDS、激光粒度分析仪、霍尔流速计等分析方法对制得球形粉末的形成机制、表面微观组织、成分、相组成、粒度分布、流动性和松装密度等进行了研究,结果表明:在工艺参数为感应功率60k W,雾化气压6.0MPa条件下,EIGA法成功制备了激光3D打印用TC4钛合金球状粉末,粉末球形度达到98%以上,含氧量(质量分数)为0.09%;合金粉末中Ti、Al、V等元素分布均匀,粉末颗粒表面物相为密排六方α'-Ti单相固溶体;制得的TC4粉末表面平整、光洁,粒度分布均匀,主要粒径在1~180μm之间,粉末流动性为24.1 s/50g,松装密度为2.699 g/cm3,松装密度比为60.93%,符合激光3D打印用TC4钛合金粉末特征要求.  相似文献   

16.
以聚乙二醇/环氧树脂(PEG-EP)为粉末表面改性剂,聚甲醛系树脂(POM)为粘结剂体系,混炼制备316L不锈钢粉末注射成型喂料,并通过硝酸催化脱脂后烧结得到316L烧结样品。通过傅里叶红外光谱仪、扫描电子显微镜、接触角测量仪、旋转流变仪、万能材料试验机、金相显微镜、碳硫分析仪、显微硬度计等研究了PEG-EP对316L不锈钢粉末的包覆效果以及PEG-EP表面处理对316L不锈钢粉末注射成型喂料和烧结样品性能的影响。结果表明,PEG-EP成功包覆在316L粉末表面,改善了316L不锈钢粉末与聚甲醛的界面相容性,提高了喂料流动的性能、生坯的力学性能和烧结样品的力学性能及硬度。当添加PEG-EP质量分数为0.662%、粉末装载量(体积分数)为63%时,316L注射生坯的拉伸强度、断裂伸长率、弯曲强度分别为10.57 MPa、8.38%、21.24 N·(mm2)-1;烧结样品晶粒尺寸为50.8μm,最大抗拉强度和维氏硬度为688 MPa和HV 151,烧结样品的综合性能最佳。  相似文献   

17.
以316L不锈钢粉、PMMA粉末为原料,采用粉末烧结法制备多孔不锈钢盘。采用扫面电子显微镜、泡压法孔径分布仪、透气测定仪等对不锈钢盘的孔径、渗透系数、微观结构等进行了表征。结果表明:随着PMMA含量减小,多孔金属烧结盘厚度降低,其烧结后金属颗粒间距减小,更易形成烧结颈。最佳烧结温度1100℃,当PMMA含量最小时,其透气率达到最小值63 m^(3)/(m^(2)·kpa·h),平均孔径降低至2.79μm。  相似文献   

18.
采用激光粒度分析仪、金相显微镜、扫描电子显微镜(SEM)等手段,对气雾化工艺制备的TiAl基预合金粉末及其真空热压烧结组织进行研究。结果表明:采用气雾化工艺制备的预合金粉末颗粒细小,具有良好的球形度,粉末粒径主要分布在20.0~40.0μm之间,不同尺寸的粉末,其表面和内部组织形貌不同。小粒径粉末内部及表面均呈现无组织特征形貌,随着粉末颗粒尺寸的进一步增大,粉末表面及内部形貌均逐渐由胞状晶向树枝晶转变;经真空热压烧结后,其微观组织致密均匀,表面形貌平整无孔洞,内部形貌呈双态组织。  相似文献   

19.
通过设计水雾化喷嘴结构,优化冶炼工艺,采用水-粉离心分离方法,批量生产出适合MIM使用的不锈钢粉末,并制备了不锈钢粉末的MIM样品,与国外同类产品作了对比评价.结果表明,改进的水雾化工艺制备的不锈钢粉末粒度细,氧含量低,振实密度高,性能已达到国际同类产品先进水平.  相似文献   

20.
以硫酸钴、氢氧化钠为原料,EDTA为络合剂,采用液相法合成了大颗粒类球形Co3O4。结果表明:在氢氧化钠溶液浓度为10 mol/L、硫酸钴溶液浓度为90 g/L、p H=10、温度为60℃、空气流量为8.0m3/h条件下,能够得到表面形貌规则、平均粒径(D50)为8.6μm、振实密度为2.35 g/cm3、松装密度为1.12 g/cm3的大颗粒类球形Co3O4。实验用氢氧化钠代替传统的碳酸盐,并通过改进反应釜结构、配置四象限变频器等途径,保证了生产连续进行、无氨氮污染以及产品性能稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号