首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
参数不确定空间机械臂系统的鲁棒自适应混合控制   总被引:11,自引:0,他引:11  
讨论了载体位置与姿态均不受控制的漂浮基空间机械臂系统的控制问题.对系统运动学、动力学的分析结果表明,结合系统动量守恒及动量矩守恒关系得到的系统广义Jacobi关系以及系统的动力学方程是系统惯性参数的非线性函数.证明了借助于增广变量法可以将系统的增广广义Jacobi矩阵及系统动力学方程表示为一组适当选择的(组合)惯性参数的线性函数.以此为基础,针对系统惯性参数不确定的情况,设计了空间机械臂末端抓手跟踪惯性空间期望轨迹的鲁棒自适应混合控制方案.仿真运算结果证实了方法的有效性.  相似文献   

2.
陈力  刘延柱 《机器人》1999,21(6):401-406
本文讨论了载体位置与姿态均不受控制的漂浮基两杆空间机械臂系统的逆运动学问题 ,推导了系统的运动学、动力学方程.分析表明,结合系统动量守恒及动量矩守恒关系得到 的系统广义Jacobi关系为系统惯性参数的非线性函数.本文证明了,借助于增广变量法可以 将增广广义Jacobi矩阵表示为一组适当选择的惯性参数的线性函数.并在此基础上,给出了 系统参数未知时由空间机械臂末端惯性空间期望轨迹产生机械臂关节铰期望角速度、角加速 度的增广自适应控制算法.仿真运算,证实了方法的有效性.  相似文献   

3.
针对参数不确定及存在外部扰动的情况下,载体位置不控、姿态受控的漂浮基空间机器人末端抓手轨迹跟踪控制问题,提出了一种基于扰动观测器的鲁棒控制方法.结合动量守恒定律,采用拉格朗日第二类方程建立了系统动力学方程.假设外部扰动是随时间变化的未知量,设计了扰动观测器估计由外部干扰和参数不确定构成的总扰动,并基于估计的总扰动引入扰动补偿项,保证了系统的控制性能.根据Lyapunov稳定性理论,证明了文中所提出控制律的稳定性.该控制律能补偿由于参数不确定和外部扰动引起的总扰动,从而提高了系统的轨迹跟踪性能.所提出的控制方案与传统鲁棒控制方案相比,具有控制器结构简单,不需要测量机械臂角加速度及基座的位置、移动速度、移动加速度,系统所需的传感器数量少等优点.最后通过数值仿真模拟,验证了上述控制方案的有效性.  相似文献   

4.
本文首先推导了基座姿态受控空间机器人系统运动学关系,得到了广义雅可比矩阵。根据目标的运动来规划机械臂末端在惯性空间的期望轨迹。对机器人动力学和运动学关系进行线性参数化,分别对动力学待估参数和运动学待估参数设计在线修正律,在关键空间采用自适应控制。对于存在动力学参数不确定性的机器人系统,该自适应控制算法保证了系统的渐近稳定,在完成目标捕获任务的同时,控制基座姿态保持在期望范围之内。以平面两关节空间机器人系统为对象进行了仿真,结果表明了算法的可行性和有效性。  相似文献   

5.
《机器人》2014,(3)
分析漂浮基柔性空间机械臂捕获运动卫星过程的碰撞动力学,及受碰撞冲击后的不稳定空间机械臂系统的控制.首先,利用假设模态法近似描述柔性杆的弹性变形,并结合第二类拉格朗日方程建立柔性空间机械臂多体系统动力学模型.而后,基于动量守恒原理,利用动量冲量法分析空间机械臂捕获卫星的碰撞动力学.针对受碰撞冲击后不稳定运动空间机械臂,设计鲁棒镇定与自适应抑振复合控制以维持空间机械臂与被捕获卫星组合体系统稳定.最后,数值仿真揭示了碰撞冲击影响效应,并验证了上述控制算法的有效性.  相似文献   

6.
针对非完整移动机械臂系统的输出跟踪问题,在系统的惯性参数及未建模动态未知的情况下,根据动力学方程的性质,为其设计了基于非回归矩阵的自适应控制律。将其用于一类非完整移动机械臂的输出跟踪控制,仿真结果验证了所提出控制方法的正确有效性。  相似文献   

7.
对于本体姿态受控而位置不受控的空间机械臂系统,本文在任务空间内给出了一种自适应控制算。证明了当系统存在参数不确定性时,该算汉不但可以保证末端招待器在任务空间内的位置轨迹跟踪误差渐近收敛,而且还可保证在关节空间的角偏差及角偏差速率渐近收敛。仿真结果验证了算法的有效性。  相似文献   

8.
一类空间机械臂系统的自适应控制与鲁棒控制   总被引:7,自引:1,他引:6  
讨论载体位置与姿态均不受控制的自由浮动空间机械臂系统的控制问题。基于增广列反馈控制模型,提出当载荷参参数不确定时空间机械臂追踪惯性空间期望轨迹的自适应和鲁棒控制方法,通过仿真运算,证实了方法物有效性。  相似文献   

9.
对于本体资态受控而位置不受控的空间机械臂系统,其自适应控制通常是从跟踪误差中获得有关参数信息,但除了跟踪误差外,估计中也含有参数信息。本文首先分析了一类空间机械臂系统的动力学特性,建立了系统的估计模型,并且提出了一种复合自适应控制方法,其参数适应由估计误差和跟踪误差共同;证明了这种自适应方法不仅可维持自适应控制系统的全局稳定,而且还可快速收敛和减小跟踪误差,仿真结果也验证了这一特点。  相似文献   

10.
针对现有机械臂控制算法,在轨迹控制和精度补偿方面存在的不足,设计了一种基于模糊补偿系统的自适应控制算法。先在笛卡尔空间内分析了机械臂的空间动力学运动过程,并得出机械臂运动中的最优力矩值,构建模糊控制规则并设定模糊子集;对经典模糊理论进行优化,引入可变论域思维在机械臂运动过程中,系统会实时反馈末端执行器行动轨迹,并实施动态化补偿;基于自适应算法对可变论域模糊控制器进行二次优化,修正模糊规则并校正模型的控制量参数,提升和改善整个机械臂系统的控制精度。实验结果显示,模糊补充自适应控制算法在多关节和多连杆机械臂的角度控制和位移控制精度方面有较大的优势,同时各关节和连杆的运动相应时间仅为0.27s和0.20s。  相似文献   

11.
考虑由载体和机械臂组成的空间机器人系统的协调控制问题,提出了一种新的协调 控制策略.该策略首先利用简单的变结构控制器粗略控制载体的运动,进而设计机械臂控制 器以保证手端精确跟踪其期望的运动轨迹.应用该策略分别对手端自由运动和受限运动设计 了相应的控制器,并对两杆平面空间机器人系统进行了仿真,证实了控制策略的有效性.  相似文献   

12.
This paper tackles the problem of integrated translation and rotation stabilization of the spacecraft in proximity operations by proposing a novel manipulator actuation strategy. To do so, by theoretically integrating the attitude/position motion of the spacecraft and the joint motion of the manipulator, a coupled translational and rotational kinematics of the spacecraft with a single space manipulator mounted is formulated, where system unknown parameters and residual system momentum are taken into account and analyzed. Taking the joint motion as the control input, a projection-based adaptive control scheme is then developed such that the translation and rotation of the spacecraft can be robustly stabilized with the manipulator-based actuation. The closed-loop asymptotic stability is guaranteed within Lyapunov framework. Meanwhile, considering the constrained joint motion of the manipulator, the resulting control constraint issue is handled by developing an optimization based bound analysis method, which also facilitates the determination of control parameters. Two scenario numerical simulations demonstrate the effect of the designed control scheme.  相似文献   

13.
《Advanced Robotics》2013,27(4):429-448
This paper is aimed at presenting solution algorithms to the inverse kinematics of a space manipulator mounted on a free-floating spacecraft. The reaction effects of the manipulator's motion on the spacecraft are taken into account by means of the so-called generalized Jacobian. Redundancy of the system with respect to the number of task variables for spacecraft attitude and manipulator end-effector pose is considered. Also, the problem of both spacecraft attitude and end-effector orientation representation is tackled by means of a non-minimal singularity-free representation: the unit quaternion. Depending on the nature of the task for the spacecraft/manipulator system, a number of closed-loop inverse kinematics algorithms are proposed. Case studies are developed for a system of a spacecraft with a six-joint manipulator attached.  相似文献   

14.
This article studies the leader-following attitude coordination problem of a group of rigid spacecraft subject to communication constraint, disturbances and uncertain control coefficient matrices. A fully distributed adaptive anti-disturbance attitude coordinated control scheme with event-triggering mechanism is developed. First, the event-triggered adaptive distributed observer is designed for each follower to estimate the leader's information without continuous communication requirement. Based on the estimated information, the adaptive anti-disturbance attitude tracking controller is designed such that asymptotic coordinated tracking can be achieved under additive disturbances and actuators' partial loss of efficiency. The proposed control scheme ensures that all the closed-loop signals are bounded and the positive lower bound of inter-event times exists in each subsystem. Simulation results illustrate the effectiveness and flexibility of the proposed control scheme.  相似文献   

15.
Most research so far on trajectory tracking of free-floating space manipulators has assumed that the kinematics of the space manipulator is exactly known. However, when a space manipulator picks up different tools of unknown lengths or unknown gripping points, its kinematics and dynamics change and are difficult to derive exactly. Thus, in this paper, we have proposed a passivity based adaptive Jacobian controller for free-floating space manipulators. The proposed controller consists of a transposed Jacobian feedback and a dynamic compensation term, and the parameter adaptation laws are derived by Lyapunov-like stability analysis tools. It is shown that the end-effector motion tracking errors converge asymptotically. To avoid using spacecraft acceleration, we define a new reference velocity, which is called spacecraft reference velocity. In addition, we have also conducted passivity interpretation of the proposed controller to obtain some physical insight into its properties. Simulation results are presented to show the performance of the proposed controller.  相似文献   

16.
Presents an approach to the design and real-time implementation of an adaptive controller for a robotic manipulator based on digital signal processors. The Texas Instruments DSP (TMS320C31) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for robotic manipulators. In the proposed scheme, adaptation laws are derived from the direct model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feedforward and feedback controller and PI-type time-varying auxiliary control elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for an industrial robot with four joints in the joint space and Cartesian space  相似文献   

17.
This paper is devoted to investigating the recursive implementation schemes of adaptive control for free-floating space manipulators. Using spatial vector tool and some physical properties that free-floating space manipulators enjoy, we establish a general framework on the seeking of the centripetal and Coriolis matrix that satisfies the skew symmetry requirement. Under this general framework, we propose a recursive adaptive algorithm for free-floating manipulators, which is composed of two parts: the first part is the recursive derivation of the required manipulator control torques, and the second part is the recursive updating of the spacecraft reference velocity and acceleration. To guarantee the uniform positive definiteness of the estimated spacecraft inertia, we present a parameter projection algorithm to project the estimated parameters into some pre-specified parameter region. In the next, we extend the proposed recursive adaptive algorithm to task-space control of free-floating space manipulators. We examine the performance of the proposed recursive adaptive algorithms via numerical simulation on a six-DOF space manipulator.  相似文献   

18.
《Advanced Robotics》2013,27(6):603-624
This paper studies the motion control of a multiple manipulator free-flying space robot chasing a passive object in near proximity. Free-flyer kinematics are developed using a minimum set of body-fixed barycentric vectors. Using a general and a quasi-coordinate Lagrangian formulation, equations of motion for model-based controllers are derived. Two model-based and one transposed Jacobian control algorithms are developed that allow coordinated tracking control of the manipulators and the spacecraft. In particular, an Euler parameter model-based control algorithm is presented that overcomes the non-physical singularities due to Euler angle representation of attitude. To ensure smooth operation, and reduce disturbances on the spacecraft and on the object just before grasping, appropriate trajectories for the motion of spacecraft/manipulators are planned. The performance of model-based algorithms is compared, by simulation, to that of a transposed Jacobian algorithm. Results show that due to the complexity of space robotic systems, a drastic deterioration in the performance of model-based algorithms in the presence of model uncertainties results. In such cases, a simple transposed Jacobian algorithm yields comparable results with much reduced computational burden, an issue which is very important in space.  相似文献   

19.
针对空间中自由漂浮多臂航天器的多臂协同问题,提出一种基于一致性理论的协同控制方法,采用有向通信拓扑与广义雅克比矩阵结合的方式,实现自由漂浮航天器多机械臂间的协同.首先,建立多机械臂间的通信关系有向图,确定“领导-跟随”体系下的主臂与从臂;其次,基于有向通信拓扑,进行主从臂末端运动规划,实现主臂运动向从臂的传递;再次,利用广义雅克比矩阵在动量守恒条件下进行末端运动向关节运动的映射,并基于一致性理论设计关节空间内的多臂协同运动控制器;最后,基于李雅普诺夫稳定性理论证明控制器的稳定性,并分析位置控制误差.仿真结果表明,所提出的控制方法可以实现多臂航天器系统空间操控任务中各机械臂的聚集、跟踪与位置协同.  相似文献   

20.
《Advanced Robotics》2013,27(4):451-476
In this paper, the non-holonomic characteristic of a free-floating space robotic system is used to plan the path of the manipulator joints, by whose motion the base attitude and the manipulator joints attain the desired states. Here, we parameterize the joint trajectory using sinusoidal functions, whose arguments are high-order polynomials. Then, we define the cost function for optimization according to the constraint conditions and the accuracy of the space robot. Finally, genetic algorithms (GAs) are used to search for the solutions of the parameters. Compared with others, our approach has advantages as follows. (i) The motion of the manipulator and the disturbance on the base are practically constrained. (ii) The dynamic singularities cannot affect the algorithm since only the direct kinematic equations are utilized. (iii) The planned path is smooth and more applicable for the control of the manipulator. (iv) The convergence of the algorithm is not affected by the attitude singularity since the orientation error is represented by quaternion, which is globally singularity-free. The simulation results of the spacecraft with a 6-d.o.f. manipulator verify the performance and the validity of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号