首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用水热法合成Bi_2Te_3粉体,将炭黑(CB)与其掺杂制备不同比例的碲化铋/炭黑(Bi_2Te_3/CB)复合材料,研究复合材料的热电性能。同时采用TGA、SEM、XRD等分析方法表征Bi_2Te_3/CB复合材料的结构,探究微观结构与热电性能的关系。研究发现:室温下,CB的引入使Bi_2Te_3/CB复合材料的热导率大大降低(0.5957 W/(m·K)降到0.0888 W/(m·K));随着Bi_2Te_3含量的增加,复合材料的电导率、热导率均增大,Seebeck系数先增加后降低;当Bi_2Te_3含量为88.9%时,在558℃烧结10min所得的Bi_2Te_3/CB复合材料室温下热电优值ZT最大(ZT=0.21)。虽然ZT值未能达到应用价值,但是CB的添加为改善Bi_2Te_3材料的热电性能,尤其在降低材料的热导率方面,提供了新方法和新思路。  相似文献   

2.
Bi_2Te_3及其固溶体金金是目前室温附近发展最为成熟、性能最好的一类热电材料,在热电制冷及温差发电方面具有广阔的应用前景.如何最大限度地提高材料的热电优值是当今热电材料研究的主要问题.传统块体Bi_2Te_3基热电材料的最高ZT值只能达到1.0左右,而低维化、纳米化的Bi_2Te_3基热电材料可使电子和声子的传输得到合理调控,从而大幅提升材料的热电性能.综述了二维纳米薄膜、一维纳米线(管、棒)和准零维纳米颗粒等低维Bi_2Te_3基热电材料的最新研究进展,并结合目前的研究状况展望了今后的研究重点及发展方向.  相似文献   

3.
采用感应熔炼、球磨与放电等离子烧结的方法制备了SiC第二相均匀分布的Si_(80)Ge_(20)B_(0.6)-SiC纳米复合热电材料。系统研究了细化Si_(80)Ge_(20)B_(0.6)晶粒尺寸与复合SiC纳米颗粒对材料热电性能的影响。球磨导致的Si_(80)Ge_(20)B_(0.6)晶粒尺寸的降低显著增加了材料的晶界数量,进而增强了晶界对中长波声子的散射,能够有效降低材料的晶格热导。Si_(80)Ge_(20)B_(0.6)基体中均匀分布的纳米SiC颗粒提供了额外的散射中心和界面,可进一步增强声子散射,降低材料的晶格热导。在纳米结构化与SiC纳米复合的共同作用下,材料在1000 K时热电优值ZT达到了0.62,较基体提高了17%。证明纳米结构化与纳米复合方法能够共同作用于硅锗合金,提高其热电性能。  相似文献   

4.
采用水热合成法制备了由纳米棒组成的微米级球形Bi_2S_3颗粒,然后通过放电等离子烧结技术(SPS)将不同摩尔比例的BiCl_3/Bi_2S_3复合粉末制备成块体。加入适量的BiCl_3不仅提高了Bi_2S_3样品的导电率,而且降低了其热导率。Bi_2S_3复合0.5mol%BiCl_3的样品在762 K电导率最大,达到45.1 S·cm~(-1),远高于此温度下纯Bi_2S_3样品的电导率(12.9 S·cm~(-1))。Bi_2S_3复合0.25mol%BiCl_3的样品在762 K时热导率最低,为0.31 W·m~(-1)·K~(-1),低于同一温度下纯Bi_2S_3的0.47 W·m~(-1)·K~(-1)。在762 K下,Bi_2S_3复合0.25mol%BiCl_3的样品获得最大ZT值(0.63),比纯Bi_2S_3样品(0.22)提高了大约2倍。  相似文献   

5.
采用水热合成法结合放电等离子烧结技术制备了Ag_2S/Bi_2S_3块体热电复合材料。采用XRD、SEM和TEM对合成粉末材料的相组成和微观形貌进行分析,闪光法和塞贝克系数/电阻测量系统测试复合块材的热电性能,系统地研究了Ag_2S的含量对Ag_2S/Bi_2S_3复合材料热电性能的影响。实验结果表明,水热法成功地合成了具有球形结构的Ag_2S/Bi_2S_3复合粉末;块体样品的塞贝克系数都为负,说明样品为n型半导体;适量的Ag_2S复合Bi_2S_3不仅有效地降低了材料的热导率,同时也提高了电导率;当Bi_2S_3与3%的Ag_2S复合时样品的热电优值(ZT值)最大,其在724K时的ZT值为0.23,为纯Bi_2S_3样品在该温度ZT值的2.3倍。  相似文献   

6.
利用丝网印刷法在聚酰亚胺基板上制备了Bi_(0.5)Sb_(1.5)Te_3/环氧树脂柔性复合热电厚膜,通过优化Bi_(0.5)Sb_(1.5)Te_3粉末含量提高了其电输运性能。复合厚膜在300 K时的最优功率因子达到1.12 mW·m~(-1)·K~(-2),较前期报道的数值提高了33%。抗弯测试表明复合厚膜的电阻在弯曲半径大于20 mm时基本不变,在弯曲半径为20 mm,弯曲次数小于3000次时,仅有轻微增大,说明其在柔性热电器件领域具有应用潜力。红外热成像技术显示,在工作电流为0.01 A到0.05 A时,复合厚膜热电臂两端可以形成4.2℃到7.8℃的温差,表明了其在面内制冷领域应用的可能性。  相似文献   

7.
采用微波加热合成结合放电等离子烧结制备出Bi_(1-x)Pb_xCuSeO(x=0,0.2,0.3)热电块体样品,并对它们的物相组成、微观结构、电输运机制和热输运机制进行了研究。研究结果表明,采用微波加热成功合成出高纯度Bi_(1-x)Pb_xCuSeO,随后采用放电等离子体烧结获得了元素分布均匀、相对致密度99%的块体样品;Bi位铅的掺入显著降低了样品电阻率,导电性随铅浓度的增加而提高,Bi_(0.7)Pb_(0.3)CuSeO的电阻率仅为4.6~9.3μΩ·m;塞贝克系数有所降低,但功率因子大幅提高至约800μWm~(-2)·m~(-1);Pb掺杂降低了样品晶格热导率,但由于导电性的提高导致电子热导率增高,使得掺杂样品总热导率略高于未掺杂样品;由于综合电性能的显著提高,Bi_(0.2)Pb_(0.8)CuSeO在773 K获得最大热电优值0.54,相比未掺杂样品提升25%。  相似文献   

8.
具有本征低晶格热导率的I-V-VI_2族三元硫属化合物在热电领域引起了广泛关注。AgBiSe_2作为这类化合物中少有的n型半导体,成为一种有潜力的热电材料。本工作系统研究了AgBiSe_2的热电性能。基于Ag_2Se-Bi_2Se二元相图,单相的(Ag_2Se)_(1–x)(Bi_2Se_3)_x的成分在x=0.4~0.62范围可调,使得该材料载流子浓度具有可调性。结果表明,通过组分调控获得了较宽范围的载体浓度1.0×10~(19)~5.7×10~(19) cm~(-3),并基于声学声子散射的单一抛物带模型对其电传输性能进行了综合评估。本研究获得的最高载流子浓度接近理论最优值,在700 K实现了最高ZT值0.5。本研究有助于深入理解AgBiSe_2的传输特性和决定热电性能的基本物理参数。  相似文献   

9.
在高速发展的21世纪,随着化石能源的日渐枯竭,人们开始把目光投放到新能源的开发。其中,热电技术的研究和发展受到广泛关注。基于热电材料的热电发电技术能够将热能直接转换为电能,相关器件和系统具有体积小、质量轻、坚固、无传动部件、无噪声运行、安全可靠、易于控制等优点。热电优值(ZT)是评价热电性能的参数,ZT=S~2σT/κ,其中S是泽贝克系数,σ是电导率,T是绝对温度,κ是热导率。当ZT值达到1以上时,说明热电材料达到商业应用的基本要求。近年来,多类性能出色的热电材料被发现并得到深入研究。"声子液体-电子晶体"(PLEC)类材料概念被提出后,就凭借其超低热导率特征而受到了广泛关注。作为典型的PLEC类材料,Cu-S系材料备受关注并得到较为深入的研究,其中以Cu_2S和Cu_2Se为主,它们都是本征p型半导体材料,具有低的热导率。在结构上,两种半导体随着温度的升高,都会发生结构相变,其中,723 K的α-Cu_2S和400 K的β-Cu_2Se为立方相,具有很低的热导率。在α-Cu_2S中,Cu离子在S原子组成的刚性亚点阵中具有类液体的迁移行为,成为液态亚点阵。液态亚点阵对格波声子的横向传输具有很强的扰动,减少了热传导的横模数目,导致定容比热、声子平均速率和声子平均自由程的减小,使Cu_2S具有很低的热导率。在制备方法上,Cu_(2-x)S和Cu_(2-x)Se均可采用纳米材料常见的合成方法——水热法和前驱体法,这两种合成方法均具有操作简单、成本低、粒径小和可灵活调控的优点。掺杂、复合是改善Cu_(2-x)S和Cu_(2-x)Se性能的常见手段,通过这两种方法改善其电导率或者改变其结构能够得到更低的热导率,从而获得更好的热电性能。如通过在S位上掺杂Te形成Cu_2S_(0. 52)Te_(0. 48),此化合物为纳米级马赛克结构,在1 000 K时,其ZT值达到2. 1。在Se位上掺杂S形成Cu_2Se_(0. 8)S_(0. 2),不仅能降低声子的散射速度,还能引入额外的点缺陷散射声子,进一步降低复合块体的热导率,在950 K时,ZT值达到1. 65。本文以PLEC类材料中的Cu_2S和Cu_2Se热电材料为主要对象,简要介绍其结构和性能,概述其常见的制备方法和最近提出的新型合成方法,综述其性能的改善方法及最新研究进展。  相似文献   

10.
作为ⅣA族碲化物,SnTe具有与PbTe相同的晶体结构和相似的双价带结构,是一种非常有前途的热电材料,但高温软化和低温热电性能差等问题阻碍了其进一步推广应用。因此,提升SnTe的平均热电优值,拓宽服役区间,有重要的研究意义。能带工程和晶格工程可同时优化功率因子和晶格热导率,提升SnTe的热电性能。本研究采用MgSe合金化策略,通过熔炼和放电等离子烧结(SPS)的方法制备了一系列Sn1-yPbyTe-x%MgSe(0.01≤y≤0.05,0≤x≤6)样品。研究发现,合金化MgSe可增大能带带隙,有效抑制本征SnTe在高温段的双极扩散,使高温Seebeck系数得到提升,同时声子散射降低了体系晶格热导率,使高温热电性能(873 K)提升了100%;掺杂Pb元素可有效调制载流子浓度抑制电子热导率,从而提升SnTe平均热电性能。其中,Sn0.96Pb0.04Te-4%MgSe样品在873 K的ZT为1.5,423~873 K的平均ZT达到0.8,得到了比文献更优异的结果。  相似文献   

11.
采用MgH2代替Mg粉,与Si粉和Bi粉按照一定比例混合后,在FAPAS(电场激活压力辅助合成)炉中,用一步合成法制备Bi(1%(摩尔分数))掺杂的硅化镁(Mg2Si)块体热电材料。系统研究了一步合成法烧结制备Mg2Si基热电材料的工艺过程,对试样进行了成分和热电性能分析,并且与管式炉+FAPAS(T+F)法制备出的样品进行比较。实验结果表明,一步合成法制备块体Mg2Si基热电材料效率高,产物具有纯净和纳米的特征,有效降低了热导率,从整体上改善了材料的热电性能。同时,适度过量的Si有助于提高材料的热电性能,配比为1.95∶1的样品在热电性能上要优于配比为2∶1的样品,在725K时,前者的ZT值可达0.54。  相似文献   

12.
以Mg、Si、Sn、Sb块体为原料,采用熔炼结合放电等离子烧结(SPS)技术制备了n型(Mg2Si1-xSbx)0.4-(Mg2Sn)0.6(0≤x≤0.0625)系列固溶体合金.结构及热电输运特性分析结果表明:当Mg原料过量8wt%时,可以弥补熔炼过程中Mg的挥发损失,形成单相(Mg2Si1-xSbx)0.4-(Mg2Sn)0.6固溶体.烧结样品的晶胞随Sb掺杂量的增加而增大;电阻率随Sb掺杂量的增加先减小后增大,当样品中Sb掺杂量x≤0.025时,样品电阻率呈现出半导体输运特性,Sb掺杂量x>0.025时,样品电阻率呈现为金属输运特性.Seebeck系数的绝对值随Sb掺杂量的增加先减小后增大;热导率κ在Sb掺杂量x≤0.025时比未掺杂Sb样品的热导率低,在Sb掺杂量x>0.025时高于未掺杂样品的热导率,但所有样品的晶格热导率明显低于未掺杂样品的晶格热导率.实验结果表明Sb的掺杂有利于降低晶格热导率和电阻率,提高中温区Seebeck系数绝对值;其中(Mg2Si0.95Sb0.05)0.4-(Mg2Sn)0.6合金具有最大ZT值,并在723 K附近取得最大值约为1.22.  相似文献   

13.
按不同Ag/Sb比制备了(GeTe)85(AgySb2-yTe3-y)15(y=1.0,1.02,1.2,1.3,1.5)系列TAGS热电材料,发现偏化学计量比的样品中有Ag8GeTe6低热导率第二相的析出。改变Ag/Sb比能显著降低材料的晶格热导率,y=1.3样品的晶格热导率在700K约为基体相的40%。样品的电导率随着y值的增加先增加后减小,Seebeck系数随成分的变化规律与电导率相反,随着Ag/Sb比增加而减小。y=1.02样品在744K时获得最大ZT值1.37,与等化学计量比y=1.0样品相比提高了10%左右,且随着温度的进一步升高,ZT值有继续上升的趋势。  相似文献   

14.
本文报道用分子束外延(Molecular Beam Epitaxy:MBE)技术制备了优良的铬(Cr)掺杂硒化铋(Cr-Bi_(2)Se_(3))薄膜样品。通过反射高能电子衍射(Reflective High Energy Electron Diffraction:RHEED)、X射线衍射(X-ray diffraction:XRD)技术和电磁输运系统对Cr-Bi_(2)Se_(3)进行测试。实验结果显示:较低的生长温度下Cr进入Bi_(2)Se_(3)中替代Bi位形成Cr Bi;较高的生长温度下Cr进入Bi_(2)Se_(3)中的范德瓦尔斯间隙形成层间(Interlayer)CrI,这一区别导致Cr-Bi_(2)Se_(3)在生长速率及磁性等方面表现出不同的性质。所以可以通过控制生长温度来调制Cr的掺杂位置,得到更理想的效果。  相似文献   

15.
Ag、La双掺杂对Ca3Co4O9热电性能的影响   总被引:1,自引:1,他引:0  
采用固相反应法,在常压空气中烧结制备出了(Ca1-x-yAgxLay)3Co4O9(x=0、0.1,y=0;x=0.1,y=0.02、0.04、0.06)系列块体样品;通过X射线衍射和扫描电镜对样品的物相组成和微观结构进行了表征;研究了Ag、La双掺杂对样品热电性能参数Seebeck系数、电阻率和热导率的影响。结果表明,双掺杂可以进一步提高材料热电性能,且掺杂浓度的选择对热电性能有较大的影响;在873K时,x=0.1,y=0.02样品的ZT值最大。  相似文献   

16.
采用真空熔炼、机械球磨及放电等离子烧结技术(SPS)制备得到了(Ag2Te)x(Bi0.5Sb1.5Te3)1-x(x=0,0.025,0.05,0.1)系列样品,性能测试表明,Ag2Te的掺入可以显著改变材料的热电性能变化趋势,掺杂样品在温度为450~550K范围内具有较未掺杂样品更优的热电性能.适当量的Ag2Te掺入能够有效地提高材料的声子散射,降低材料的热导率.在测试温度范围内,(Ag2Te)0.05(Bi0.5Sb1.5Te3)0.95具有最低的晶格热导,室温至575K范围内保持在0.2~0.3W/(m·K)之间,在575K时,(Ag2Te)0.05(Bi0.5Sb1.5Te3)0.95试样具有最大热电优值ZT=0.84,相较于未掺杂样品提高了约20%.  相似文献   

17.
在高温高压下合成方钴矿结构热电材料Ba_(0.32)Co_4Sb_(12-x)Te_x(0.1≤x≤0.9),测试了样品的微观结构和室温电学性质。结果表明:Ba填充Te置换型方钴矿Ba_(0.32)Co_4Sb_(12-x)Te_x为n型半导体;在不同压力下,随着Te填充分数的增加,Seebeck系数的绝对值和电阻率均呈降低趋势,功率因子显著提高。在1.5 GPa、900 K条件下合成的Ba_(0.32)Co_4Sb_(11.9)Te_(0.1)化合物功率因子达到最大值(9.7μWcm~(-1)K~(-2))。  相似文献   

18.
以溶胶-凝胶法合成了PPP@Zn1-xCoxO纳米复合热电材料(x=0, 0.025), 再以放电等离子烧结制备成块体, 并对其热电性能进行了研究。由透射电镜照片发现, PPP纳米颗粒尺寸在200 nm以下。热电性能分析表明, 随着PPP添加量的增加, 赛贝克系数先增大后减小。电导率随PPP含量增加而大幅度提高。与ZnO块体材料相比, 溶胶-凝胶法合成的PPP@Zn1-xCoxO纳米复合热电材料的热导率大幅度降低, 在640 K时, 9wt% PPP的纳米复合热电材料热导率降低至5.4 W/(m·K)。电导率的增加和热导率的降低, 导致热电性能大幅度提高, 9wt%PPP@Zn0.975Co0.025O纳米复合热电材料在870 K时具有最大ZT值(0.16), 是Zn0.975Co0.025O材料的8倍。  相似文献   

19.
利用二次固相反应方法制备了Ce掺杂的Ca3Co4O9热电材料(CexCa3-xCo4O9,x=0、0.1、0.3),并测试了样品的微观结构和高温热电性能。测试结果表明,Ce替代Ca可有效调制Ca3Co4O9的热电参数;随着温度的升高,样品的电阻率和热导率降低,See-beck系数增大。在973K的温度下,Ce0.1Ca2.9Co4O9具有最高的热电性能(ZT=0.23)。  相似文献   

20.
近年来,随着能源危机的加剧,可以将热能与电能进行直接转换的热电材料得到了广泛的关注。在众多热电材料体系中,有机无机纳米复合热电材料具有独特优势。相比于无机材料,有机材料成本低、质量轻、机械柔韧性好、热导率较低。添加不同类型的添加材料构成纳米复合材料后,额外引入的声子-界面散射能进一步降低热导率,同时有机无机材料能带不匹配引起的载流子筛选效应进一步提升塞贝克(Seebeck)系数。因此,目前大量工作证明有机无机纳米复合热电材料有潜力获得高的热电优值(Figure of merit,ZT),在微型热电制冷器件、柔性可穿戴发电设备、温度传感器等领域均具有光明的应用前景。本文聚焦聚(3, 4-乙烯二氧噻吩)∶聚(苯乙烯磺酸盐)(PEDOT∶PSS)热电材料及以其为基底构成的纳米复合材料热电性能的研究工作,综述了提升PEDOT∶PSS热电性能的物理方法、化学试剂改性法等。进一步重点讨论了加入不同类型的无机填料的PEDOT∶PSS基纳米复合材料热电性质的研究进展,并揭示了其热电性能提升的内在机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号