首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
W-X. Du    C.W. Olsen    R.J. Avena-Bustillos    T.H. McHugh    C.E. Levin    R. Mandrell    Mendel  Friedman 《Journal of food science》2009,74(7):M390-M397
ABSTRACT:  Physical properties as well as antimicrobial activities against  Escherichia coli  O157:H7,  Salmonella enterica , and  Listeria monocytogenes  of allspice, garlic, and oregano essential oils (EOs) in tomato puree film-forming solutions (TPFFS) formulated into edible films at 0.5% to 3% (w/w) concentrations were investigated in this study. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor-phase diffusion of the antimicrobial from the film to the bacteria. The results indicate that the antimicrobial activities against the 3 pathogens were in the following order: oregano oil > allspice oil > garlic oil.  Listeria monocytogenes  was less resistant to EO vapors, while  E. coli  O157:H7 was more resistant to EOs as determined by both overlay and vapor-phase diffusion tests. The presence of plant EO antimicrobials reduced the viscosity of TPFFS at the higher shear rates, but did not affect water vapor permeability of films. EOs increased elongation and darkened the color of films. The results of the present study show that the 3 plant-derived EOs can be used to prepare tomato-based antimicrobial edible films with good physical properties for food applications by both direct contact and indirectly by vapors emanating from the films.  相似文献   

2.
An improved method of sample preparation was used in a microplate assay to evaluate the bactericidal activity levels of 96 essential oils and 23 oil compounds against Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica obtained from food and clinical sources. Bactericidal activity (BA50) was defined as the percentage of the sample in the assay mixture that resulted in a 50% decrease in CFU relative to a buffer control. Twenty-seven oils and 12 compounds were active against all four species of bacteria. The oils that were most active against C. jejuni (with BA50 values ranging from 0.003 to 0.009) were marigold, ginger root, jasmine, patchouli, gardenia, cedarwood, carrot seed, celery seed, mugwort, spikenard, and orange bitter oils; those that were most active against E. coli (with BA50 values ranging from 0.046 to 0.14) were oregano, thyme, cinnamon, palmarosa, bay leaf, clove bud, lemon grass, and allspice oils; those that were most active against L monocytogenes (with BA50 values ranging from 0.057 to 0.092) were gardenia, cedarwood, bay leaf, clove bud, oregano, cinnamon, allspice, thyme, and patchouli oils; and those that were most active against S. enterica (with BA50 values ranging from 0.045 to 0.14) were thyme, oregano, cinnamon, clove bud, allspice, bay leaf, palmarosa, and marjoram oils. The oil compounds that were most active against C. jejuni (with BA50 values ranging from 0.003 to 0.034) were cinnamaldehyde, estragole, carvacrol, benzaldehyde, citral, thymol, eugenol, perillaldehyde, carvone R, and geranyl acetate; those that were most active against E. coli (with BA50 values ranging from 0.057 to 0.28) were carvacrol, cinnamaldehyde, thymol, eugenol, salicylaldehyde, geraniol, isoeugenol, citral, perillaldehyde, and estragole; those that were most active against L monocytogenes (with BA50 values ranging from 0.019 to 0.43) were cinnamaldehyde, eugenol, thymol, carvacrol, citral, geraniol, perillaldehyde, carvone S, estragole, and salicylaldehyde; and those that were most active against S. enterica (with BA50 values ranging from 0.034 to 0.21) were thymol, cinnamaldehyde, carvacrol, eugenol, salicylaldehyde, geraniol, isoeugenol, terpineol, perillaldehyde, and estragole. The possible significance of these results with regard to food microbiology is discussed.  相似文献   

3.
Fruit and vegetable skins have polyphenolic compounds, terpenes, and phenols with antimicrobial and antioxidant activity. These flavoring plant essential oil components are generally regarded as safe. Edible films made from fruits or vegetables containing apple skin polyphenols have the potential to be used commercially to protect food against contamination by pathogenic bacteria. The main objective of this study was to evaluate physical properties as well as antimicrobial activities against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica of apple skin polyphenols at 0% to 10% (w/w) concentrations in apple puree film-forming solutions formulated into edible films. Commercial apple skin polyphenol powder had a water activity of 0.44 and high total soluble phenolic compounds and antioxidant capacity (995.3 mg chlorogenic acid/100 g and 14.4 mg Trolox/g, respectively). Antimicrobial activities of edible film containing apple skin polyphenols were determined by the overlay method. Apple edible film with apple skin polyphenols was highly effective against L. monocytogenes. The minimum concentration need to inactive L. monocytogenes was 1.5%. However, apple skin polyphenols did not show any antimicrobial effect against E. coli O157:H7 and S. enterica even at 10% level. The presence of apple skin polyphenols reduced water vapor permeability of films. Apple skin polyphenols increased elongation of films and darkened the color of films. The results of the present study show that apple skin polyphenols can be used to prepare apple-based antimicrobial edible films with good physical properties for food applications by direct contact.  相似文献   

4.
The antimicrobial activity of essential oils (EOs) of cinnamon bark, cinnamon leaf, and clove against Listeria monocytogenes Scott A were studied in semiskimmed milk incubated at 7 degrees C for 14 days and at 35 degrees C for 24 h. The MIC was 500 ppm for cinnamon bark EO and 3,000 ppm for the cinnamon leaf and clove EOs. These effective concentrations increased to 1,000 ppm for cinnamon bark EO, 3,500 ppm for clove EO, and 4,000 ppm for cinnamon leaf EO when the semiskimmed milk was incubated at 35 degrees C for 24 h. Partial inhibitory concentrations and partial bactericidal concentrations were obtained for all the assayed EOs. The MBC was 3,000 ppm for the cinnamon bark EO, 10,500 ppm for clove EO, and 11,000 ppm for cinnamon leaf EO. The incubation temperature did not affect the MBC of the EOs but slightly increased the MIC at 35 degrees C. The increased activity at the lower temperature could be attributed to the increased membrane fluidity and to the membrane-perturbing action of EOs. The influence of the fat content of milk on the antimicrobial activity of EOs was tested in whole and skimmed milk. In milk samples with higher fat content, the antimicrobial activity of the EOs was reduced. These results indicate the possibility of using these three EOs in milk beverages as natural antimicrobials, especially because milk beverages flavored with cinnamon and clove are consumed worldwide and have been increasing in popularity in recent years.  相似文献   

5.
The use of antimicrobial edible film is proposed as a means of improving food safety and extending the shelf-life of food systems by controlling the release of antimicrobials on food surfaces. In this work we first selected and studied 8 different essential oils (EOs) from plants, namely, oregano, clove, tea tree, coriander, mastic thyme, laurel, rosemary, and sage as natural antimicrobials against 2 gram-positive bacteria (Listeria innocua and Staphylococcus aureus) and 2 gram-negative bacteria (Salmonella enteritidis and Pseudomona fragi) by using the agar disk diffusion method. EOs from oregano, clove, and tea tree produced the largest surfaces of inhibition against the growth of the 4 bacterial strains tested. Second and following the assessment of compatibility, stable antimicrobial edible films based on whey protein isolate (WPI) with increasing concentrations (0.5% to 9%) of the 8 EOs were developed and tested for antimicrobial activity against the same gram-positive and gram-negative bacteria. WPI-edible films incorporating oregano or clove EO were found to have the most intense inhibitory effect of microbial growth. The bacterial strain gram-negative P. fragi presented the less susceptibility to the effect of those films. Moreover, only the edible films based on these 2 EOs were active against all 4 studied microorganisms. On the other hand, the edible films incorporating tea tree, coriander, mastic thyme, laurel, rosemary, or sage EOs even at high concentrations (7% to 9%) did not cause any antimicrobial effect against the pathogens S. aureus or S. enteritidis. PRACTICAL APPLICATION: Potential applications of this technology can introduce direct benefits to the food industry by improving safety and microbial product quality. The results of this research have direct application in the food industry with potential applications in various foodstuffs, including meat and poultry products where the control of spoilage bacteria such as P. fragi throughout their chilled storage or the improvement of food safety by controlling pathogens such as S. enteritidis are topics of particular interest for the industry.  相似文献   

6.
Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni—pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg), and mechanical property. Time–temperature superposition (TTS) principle was employed to melt rheology of EO‐based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil–based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil–based film (PLA/PEG/GAR) had the lowest activity.  相似文献   

7.
为研究新型抗菌降解包装材料,筛选肉桂精油等4?种植物精油,以玉米淀粉、壳聚糖和魔芋葡甘露聚糖为成膜基质,甘油为增塑剂,吐温-80为表面活性剂,研究肉桂精油添加对复合膜机械性能、光学性能、阻水性能和抑菌性能的影响。结果表明:4?种精油对金黄色葡萄球菌、大肠杆菌和沙门菌的抗菌活性依次为肉桂精油>牛至精油>百里香精油>迷迭香精油。随着肉桂精油质量浓度增加,复合膜的抗拉强度和水蒸气透过系数降低,断裂伸长率和不透明度升高。当肉桂精油质量浓度在15.0~20.0?g/L时,复合膜色泽指数a*值无明显差异(P>0.05),L*值显著降低,b*值和ΔE值显著增加(P<0.05)。添加肉桂精油显著提高了玉米淀粉基膜的抗菌能力(P<0.05),精油与吐温-80相互作用对革兰氏阴性的大肠杆菌具有协同作用,而对革兰氏阳性的金黄色葡萄球菌具有拮抗作用。当肉桂精油质量浓度为20.0?g/L时,膜具有较好的物理性能和抗菌效果。本研究可为肉桂精油-玉米淀粉基可降解抗菌膜生产工艺参数的进一步优化提供参考。  相似文献   

8.
Antimicrobial agents can be incorporated into edible films to provide microbiological stability, since films can be used as carriers of a variety of additives to extend product shelf life and reduce the risk of microbial growth on food surfaces. Addition of antimicrobial agents to edible films offers advantages such as the use of small antimicrobial concentrations and low diffusion rates. The aim of this study was to evaluate inhibition by vapor contact of Aspergillus niger and Penicillium digitatum by selected concentrations of Mexican oregano (Lippia berlandieri Schauer), cinnamon (Cinnamomum verum) or lemongrass (Cymbopogon citratus) essential oils (EOs) added to amaranth, chitosan, or starch edible films. Essential oils were characterized by gas chromatography-mass spectrometry (GC/MS) analysis. Amaranth, chitosan and starch edible films were formulated with essential oil concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 2.00, or 4.00%. Antifungal activity was evaluated by determining the mold radial growth on agar media inoculated with A. niger and P. digitatum after exposure to vapors arising from essential oils added to amaranth, chitosan or starch films using the inverted lid technique. The modified Gompertz model adequately described mold growth curves (mean coefficient of determination 0.991 ± 0.05). Chitosan films exhibited better antifungal effectiveness (inhibition of A. niger with 0.25% of Mexican oregano and cinnamon EO; inhibition of P. digitatum with 0.50% EOs) than amaranth films (2.00 and 4.00% of cinnamon and Mexican oregano EO were needed to inhibit the studied molds, respectively). For chitosan and amaranth films a significant increase (p<0.05) of lag phase was observed among film concentrations while a significant decrease (p<0.05) of maximum specific growth was determined. Chitosan edible films incorporating Mexican oregano or cinnamon essential oil could improve the quality of foods by the action of the volatile compounds on surface growth of molds.  相似文献   

9.
Forty-five kinds of commonly used essential oils were employed to investigate the DPPH (1,1-diphenyl2-picrylhydrazyl) radical scavenging ability and total phenolic content of major chemical compositions. The free-radical scavenging ability and total phenolic content of cinnamon leaf and clove bud essential oils are the best among these essential oils. One-half milliliter of cinnamon leaf and clove bud essential oils (10 mg mL EtOH) are shown to be 96.74% and 96.12% of the DPPH (2.5ml, 1.52 × 10-4 M) free-radical scavenging ability, respectively. Their EC50 (effective concentrations) are 53 and 36 (μg mL-1). One milligram per milliliter of cinnamon leaf, clove bud, and thyme red essential oils were shown to be 420, 480, and 270 (mg g-1 of GAE) of total phenolic content, respectively. Eugenol in cinnamon leaf and clove bud essential oils (82.87% and 82.32%, respectively) were analyzed by GC-MS. It is clear that the amounts of the phenol compounds in essential oils and the DPPH free-radical scavenging ability are in direct proportion.  相似文献   

10.
Combinations of essential oils (EOs) can be an effective approach to reinforce their antimicrobial effects. In this sense, incorporation of two EOs into edible films may have supplementary utilizations in food packaging. Chitosan films containing combined EOs of cinnamon and ginger (1:1) at levels of 0.00, 0.05, 0.20, and 1.00% were developed and preliminarily characterized in the current study. The effect of the resulting materials on the antimicrobial and antioxidant properties of pork was then investigated during refrigerated storage (4 °C) over 9 days. Results showed that the presence of EOs markedly increased the thickness and opacity of the chitosan films, but did not modify the film solubility and water vapor permeability. When applied to the preservation of pork slices, these films were effective in retarding total microbial growth, increases in pH as well as lipid oxidation. The highest antioxidant and antimicrobial activities were observed in chitosan films incorporated with 1.00% EOs. These results suggest that chitosan-EO films have potential for application in pork packaging.  相似文献   

11.
Polylactide based films were formulated by incorporating polyethylene glycol, selected nanopowders (zinc oxide, silver-copper), and essential oils (cinnamon, garlic, and clove) by solvent casting method. Films were tested against three foodborne pathogens (one gram-positive and two gram-negative) for their antibacterial activity. The effectiveness of selected cinnamon oil-based film was ascertained by performing a challenge test with cheese as a food model. In vitro antibacterial efficacies of nanopowders and essential oils were also determined by the decimal reduction concentrations and the minimum bactericidal concentrations for those foodborne pathogens. It was observed that nanopowders exhibited considerably poorer decimal reduction concentrations and minimum bactericidal concentration values in comparison to the essential oils. Silver-copper alloy nanopowders exhibited lower decimal reduction concentrations and minimum bactericidal concentrations values than ZnO against tested pathogens whereas essential oils showed distinct antimicrobial effectiveness against all those pathogens with in vitro decimal reduction concentration values of 87–157 and 77–220 µg/mL for cinnamon and clove oils, respectively. Among the various formulations, it was observed that only essential oils (especially cinnamon and clove) incorporated films exhibited a significant antimicrobial activity against the selected microorganisms. These results indicate that the poor antibacterial activity of the nanopowders and the hydrophobicity of polylactide could be responsible for the ineffectiveness of nanopowders in polylactide based films. Furthermore, the challenge test indicated the polylactide/polyethylene glycol/cinnamon oil film was appropriate to inhibit the growth of L. monocytogenes and S. typhimurium on cheese up to 11 days at refrigerated storage.  相似文献   

12.
Cinnamon, clove, and lemongrass essential oils (EOs) and their active compounds cinnamaldehyde, eugenol, and citral, respectively, were investigated for their effectiveness as antimicrobial agents in an alginate-based edible coating (EC) on fresh-cut Fuji apples. This EC also contained malic acid, N-acetyl-L-cysteine, glutathione, and calcium lactate as quality stabilizing compounds. The EC applied on apple pieces effectively maintained the physicochemical characteristics of the apple pieces for more than 30 days, decreased the respiration rate, reduced the Escherichia coli O157:H7 population by about 1.23 log CFU/g at day 0, and extended the microbiological shelf life by at least 19 days. The addition of EOs at 0.7% (vol/vol) or their active compounds at 0.5% (vol/vol) into the EC increased its antimicrobial effect, reduced the E. coli O157:H7 population by more than 4 log CFU/g, and extended the microbiological shelf life by more than 30 days. However, those concentrations of EOs affected the physicochemical characteristics of fresh-cut apples and thus limited their shelf life from 7 to 21 days. Lemongrass and cinnamon EOs (0.7%), citral (0.5%), and cinnamaldehyde (0.5%) were the most effective compounds for extending microbiological shelf life, whereas lemongrass, cinnamon, and clove EOs at 0.3% (vol/vol) best maintained the physicochemical characteristics of the product. Apple pieces with EC at day 0 and with EC with or without lemongrass EO at 0.7% at day 15 were preferred by the panelists. ECs containing natural antimicrobials and quality stabilizing compounds may be useful for extending the shelf life of fresh-cut fruits.  相似文献   

13.
The mechanism of the antimicrobial action of Spanish oregano (Corydothymus capitatus), Chinese cinnamon (Cinnamomum cassia), and savory (Satureja montana) essential oils against cell membranes and walls of bacteria was studied by the measurement of the intracellular pH and ATP concentration, the release of cell constituents, and the electronic microscopy observations of the cells when these essential oils at their MICs were in contact with Escherichia coli O157:H7 and Listeria monocytogenes. E. coli O157:H7 and L. monocytogenes, two pathogenic foodborne bacteria, were used as gram-negative and gram-positive bacterial models, respectively. Treatment with these essential oils at their MICs affected the membrane integrity of bacteria and induced depletion of the intracellular ATP concentration. Spanish oregano and savory essential oils, however, induced more depletion than Chinese cinnamon oil. An increase of the extracellular ATP concentration was observed only when Spanish oregano and savory oils were in contact with E. coli O157:H7 and L. monocytogenes. Also, a significantly higher (P < or = 0.05) cell constituent release was observed in the supernatant when E. coli O157:H7 and L. monocytogenes cells were treated with Chinese cinnamon and Spanish oregano oils. Chinese cinnamon oil was more effective to reduce significantly the intracellular pH of E. coli O157:H7, whereas Chinese cinnamon and Spanish oregano decreased more significantly the intracellular pH of L. monocytogenes. Electronic microscopy observations revealed that the cell membrane of both treated bacteria was significantly damaged. These results suggest that the cytoplasmic membrane is involved in the toxic action of essential oils.  相似文献   

14.
The antimicrobial properties of essential oils (EOs) and their derivatives have been known for years. However, the information published about the minimal effective concentration of EOs against microorganisms in fruit juices is scarce. In this study, both MIC and MBC of six EOs (lemongrass, cinnamon, geraniol, palmarosa, or benzaldehyde) against Salmonella Enteritidis, Escherichia coli, and Listeria innocua were determined by the agar and broth dilution methods, respectively. All of the six EOs inhibited the microbial (Salmonella Enteritidis, E. coli, and L. innocua) growth at a concentration from 1 microl/ ml (MIC). These studies led to choosing the three most effective EOs. Lemongrass, cinnamon, and geraniol were found to be most effective in inhibiting the growth of the microorganisms and thus were used for the MBC analysis. On this last point, significant differences (P < 0.05) among EOs, their concentrations, and culture media (apple, pear, and melon juices, or tryptone soy broth medium) were found after comparing the results on MBC for each microorganism. A concentration of 2 microl/ml from lemongrass, cinnamon, or geraniol was enough to inactivate Salmonella Enteritidis, E. coli, and L. innocua in apple and pear juices. However, in melon juice and tryptone soy broth medium, concentrations of 8 and 10 microl/ml from cinnamon, respectively, or 6 microl/ml from geraniol were necessary to eliminate the three microorganisms, whereas lemongrass required only 5 micro/ml to inactivate them. These results suggest that EOs represent a good alternative to eliminate microorganisms that can be a hazard for the consumer in unpasteurized fruit juices. The present study contributes to the knowledge of MBC of EOs against pathogenic bacteria on fruit juices.  相似文献   

15.
为了研究天然植物精油(百里香、丁香、肉桂)对霉变稻谷的抑菌效果,以5种稻谷霉变优势菌株为受试菌,以霉菌抑菌圈直径大小和最低抑菌浓度(MIC)为指标,通过混料设计方法建立复合精油抑菌模型,结合方差分析得到抑菌效果最佳的植物精油配比。研究结果表明,单一精油抑菌活性对亮白曲霉(A. candidus),杂色曲霉(A. versicolor)和聚多曲霉(A. sydowii)为肉桂精油>丁香精油>百里香精油;对稻黑孢霉(N. oryzae)为肉桂精油=丁香精油>百里精香油;对布罗克青霉菌(P. brocae)为丁香精油=百里香精油<肉桂精油。当肉桂精油:丁香精油:百里香精油的体积比为55.2%︰26.9%︰17.9%时,3种植物精油对5种菌株抑制效果最佳,复合抑制值大于90.9%。  相似文献   

16.
丁香和肉桂挥发油的提取、主要成分测定及其抗菌活性研究   总被引:11,自引:0,他引:11  
本文采用水蒸汽蒸馏法提取丁香和肉桂的挥发油,并对所得挥发油主要成分进行气相测定,通过体外抗菌试验,比较了这两种挥发油及其主要成分和目前常用化学防腐剂苯甲酸钠和山梨酸钾对金黄色葡萄球菌、大肠杆菌、枯草芽孢杆菌、沙门氏菌和志贺氏菌等5株食品中常见污染菌的抗菌作用。结果表明丁香油中丁香酚含量为78.1%,肉桂油中肉桂醛含量为86.8%;这两种挥发油及其主要成分丁香酚和肉桂醛的抗菌作用均强于两种化学防腐剂,其中肉桂油与其主要成分肉桂醛表现出的抗菌活性最强,最小抑菌浓度(MIC)为200~1600mg/L;仅为苯甲酸钠和山梨酸钾MIC(6400~25600mg/L)的1/64~1/16;丁香油及其主要成分丁香酚的抗菌活性次之,MIC为800~1600mg/L,相当于苯甲酸钠和山梨酸钾MIC的1/16~1/8。  相似文献   

17.
Ethanol production, respiration, and sporulation of yeasts as effected by essential oils and oleoresins of allspice, cinnamon, clove, garlic, onion, oregano, savory, and thyme were investigated. Essential oils of allspice, cinnamon, and clove had little or no effect on ethanol production by Sacchraromyces cerevisiae. Oils of onion, oregano, savory, and thyme delayed and/or reduced the production of ethanol. Overall, essential oils effectively suppressed ethanol production by Hansenula anomala. At the highest concentrations tested (500 μg/ml), only cinnamon, clove, garlic and thyme oleoresins substantially delayed and/or reduced ethanol production by S. cerevisiae. Most of the essential oils (100 μm/ml) impaired the respiratory activity of S. cerevisiae as evidenced by a reduction in CO2 production. Thyme oleoresin was the strongest inhibitor. Allspice and garlic oils impaired sporulation by H. anomala. All oils delayed sporulation of Lodderomyces elongisporus).  相似文献   

18.
The antioxidant potency, anti food borne bacterial activity, and total phenolic contents of essential oils (EOs) from avishane shirazi (Zataria multiflora), clove (Syzgium aromaticum), cinnamon (Cinnamomum zeylanicum), cumin (Cuminum cyminum), black cumin (Bunium persicum), spearmint (Mentha spicata), horsemint (Mentha longifolia), coriander (Coriandrum sativum), sage (Salvia officinalis), and ginger (Zingiber officinale) were evaluated. In 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, free radical scavenging activities of clove and avishane shirazi EOs were 90.69% and 88.63%, respectively. In reducing power assay, the EO of clove showed the highest reducing capacity. The highest concentrations of total phenolics (66.01 mg and 44.81 mg GAE/gram sample) were also detected for the EOs of clove and avishane shirazi, respectively. The results of disc diffusion assay showed that the EOs of avishane shirazi, cinnamon, and clove strongly inhibited growth of the tested bacteria. The EO of cinnamon had the lowest minimal inhibitory concentration (MIC) (0.312 mg/mL).  相似文献   

19.
ABSTRACT:  We developed wine formulations containing plant essential oils and oil compounds effective against foodborne pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica. HPLC was used to determine maximum solubility of antimicrobials in wines as well as amounts of antimicrobials extracted by wines from commercial oregano and thyme leaves. Activity of essential oils (cinnamon, lemongrass, oregano, and thyme) and oil compounds (carvacrol, cinnamaldehyde, citral, and thymol) in wines were evaluated in terms of the percentage of the sample that resulted in a 50% decrease in the number of bacteria (BA50). The ranges of activities in wines (30 min BA50 values) against S. enterica/E. coli were carvacrol, 0.0059 to 0.010/0.011 to 0.021; oregano oils, 0.0079 to 0.014/0.022 to 0.031; cinnamaldehyde, 0.030 to 0.051/0.098 to 0.13; citral, 0.033 to 0.038/0.060 to 0.070; lemongrass oil, 0.053 to 0.066/0.059 to 0.071; cinnamon oil 0.038 to 0.057/0.066 to 0.098; thymol, 0.0086 to 0.010/0.016 to 0.022; and thyme oil, 0.0097 to 0.011/0.033 to 0.039. Detailed studies with carvacrol, the main component of oregano oil, showed that antibacterial activity was greater against S. enterica than against E. coli and that wine formulations exhibited high activities at low concentrations of added antimicrobials. The results suggest that wines containing essential oils/oil compounds, added or extracted from oregano or thyme leaves, could be used to reduce pathogens in food and other environments.  相似文献   

20.
Essential oils of clove (Syzygium aromaticum L.), fennel (Foeniculum vulgare Miller), cypress (Cupressus sempervirens L.), lavender (Lavandula angustifolia), thyme (Thymus vulgaris L.), herb-of-the-cross (Verbena officinalis L.), pine (Pinus sylvestris) and rosemary (Rosmarinus officinalis) were tested for their antimicrobial activity on 18 genera of bacteria, which included some important food pathogen and spoilage bacteria. Clove essential oil showed the highest inhibitory effect, followed by rosemary and lavender. In an attempt to evaluate the usefulness of these essential oils as food preservatives, they were also tested on an extract made of fish, where clove and thyme essential oils were the most effective. Then, gelatin–chitosan-based edible films incorporated with clove essential oil were elaborated and their antimicrobial activity tested against six selected microorganisms: Pseudomonas fluorescens, Shewanella putrefaciens, Photobacterium phosphoreum, Listeria innocua, Escherichia coli and Lactobacillus acidophilus. The clove-containing films inhibited all these microorganisms irrespectively of the film matrix or type of microorganism. In a further experiment, when the complex gelatin–chitosan film incorporating clove essential oil was applied to fish during chilled storage, the growth of microorganisms was drastically reduced in gram-negative bacteria, especially enterobacteria, while lactic acid bacteria remained practically constant for much of the storage period. The effect on the microorganisms during this period was in accordance with biochemical indexes of quality, indicating the viability of these films for fish preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号