首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
介绍了一种新型锂盐二氟草酸硼酸锂(LiODFB)的基本性质和制备进展,以及在锂离子电池应用中的基本特性.使用LiODFB电解液的电池电化学性能优良、对电极材料相容性较好、与其他锂盐混合使用性能良好,有望成为动力电池用电解质锂盐。  相似文献   

2.
综述了近年来锂离子电池的新型锂盐--双乙二酸硼酸锂(LiBOB)研究成果.介绍了双乙二酸硼酸锂的合成方法、组成与结构、化学和电化学性能及其与结构的关系,重点综述了对LiBOB电解液导电性的研究,对负极材料、正极材料稳定性的研究,以及与其他锂盐在锂离子电池中混合使用时的性能的研究等.总结了LiBOB的优缺点,指出了其进一步研究的方向.  相似文献   

3.
中国锂二次电池正极材料的发展趋势和产业特点   总被引:9,自引:0,他引:9  
一、锂离子电池正极材料发展对锂离子电池而言,其主要构成材料包括电解液、隔离膜、正负极材料等。一般来说,在锂离子电池产品组成成分中,正极材料占据着最重要的地位,正极材料的好坏,直接决定了最终二次电池产品的性能指标。而正极材料在电池成本中所占比例可高达40%左右。目前正极材料中,以过渡金属氧化物所表现出的性能最佳,主要有层状盐结构的锂钴氧化物(LiCoO2)、层状盐结构的锂镍氧化物(LiNiO2)以及尖晶石型(LiMn2O4)和层状盐结构(LiMnO2)的锂锰氧化物。从合成工艺上控制材料结构的规整性和稳定性是获得比能量高、循环寿命长的锂…  相似文献   

4.
富锂锰(Li2MnO3)材料由四氧化三锰(Mn3O4)和碳酸锂(Li2CO3)按化学计量比经固相法制备。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对反应产物检测。结果表明:Li2MnO3产物不含杂质,其结晶度良好,是片状球形材料。Li2MnO3在锂离子电池中作为正极材料时,以双草酸硼酸锂(LiBOB)为锂盐的电解液比常规的磷酸铁锂(LiPF6)电解液表现出更稳定的循环性能和良好的倍率性能。  相似文献   

5.
正作为锂离子电池电解液添加剂使用的含氟类草酸磷酸锂盐主要有2种,分别是二氟双草酸磷酸锂(LiDFBP)和四氟草酸磷酸锂(LiFOP)。这是2种新型功能锂盐,作为锂离子电池电解液的新型添加剂,它们具有对正负极双重修饰作用,在氟代碳酸乙烯酯(FEC)等添加剂的辅助下,在改善富锂锰基为正极和硅碳为负极的全电池电化学性能方面效果显著。本文主要针对含氟类草  相似文献   

6.
电解质材料是锂离子电池的关键材料之一,它直接影响电池的性能。新型硼酸锂盐由于种类繁多且环境友好而越来越引起人们的重视。本研究详细介绍了近年来应用于锂离子电池的各种新型硼基锂盐LiBOB,LiMOB,LiBMB和LiODFB。对这些硼基锂盐的合成方法、电化学性能、稳定性、在溶剂中的溶解性、电导率进行了论述。并讨论了它们的优缺点及在锂离子电池中的应用前景。  相似文献   

7.
锂盐是获得安全性能良好的锂离子二次电池的重要因素。聚合物锂盐具有高电导率、宽电化学窗口、良好热稳定性和电化学稳定性,以及在全固态锂离子电池中的应用引起了国内外研究者的关注。文中分析了聚合物锂盐的结构与电池性能之间的关系,包括结构对材料的热稳定性、力学性能、锂离子迁移数、离子电导率和电化学窗口等的影响。总结了聚合物锂盐的合成方法,综述了均聚物型、共聚物型和离子液体型等具有代表性的聚合物锂盐在锂离子电池电解质中的应用研究进展,并对未来新型锂盐的研究方法及发展方向进行了展望。  相似文献   

8.
锂盐是获得安全性能良好的锂离子二次电池的重要因素。聚合物锂盐具有高电导率、宽电化学窗口、良好热稳定性和电化学稳定性,以及在全固态锂离子电池中的应用引起了国内外研究者的关注。文中分析了聚合物锂盐的结构与电池性能之间的关系,包括结构对材料的热稳定性、力学性能、锂离子迁移数、离子电导率和电化学窗口等的影响。总结了聚合物锂盐的合成方法,综述了均聚物型、共聚物型和离子液体型等具有代表性的聚合物锂盐在锂离子电池电解质中的应用研究进展,并对未来新型锂盐的研究方法及发展方向进行了展望。  相似文献   

9.
锂金属电池被认为是最具潜力的高能量密度储能器件之一,但是锂金属电池负极低库仑效率及不可控的枝晶生长等问题阻碍了其商业化进程.在锂金属电池中,电解液会直接参与固态电解质界面膜(SEI)的形成,对锂金属负极的库仑效率、枝晶生长等产生重要影响.传统LiPF6基酯类电解液中,锂金属库仑效率低,且锂枝晶现象严重.近年来通过电解液添加剂、溶剂、锂盐以及锂盐浓度等途径调控电解液化学,在锂金属负极保护上取得了显著效果.例如,采用与锂金属负极兼容性更佳的醚类溶剂,可以降低电解液与锂金属的反应性;采用多种添加剂与新型锂盐复配可以有效抑制锂枝晶的形成;采用高浓度锂盐电解液,可以形成稳定SEI膜等.本文综述了锂枝晶的生长原理以及通过溶剂、锂盐、添加剂和高浓度电解液等策略调控电解液化学保护锂金属电池负极的研究现状,总结了各种途径的优势及局限性.并对锂金属电池电解液的发展提出了新的见解,以激发新的策略面对锂金属电池后续的挑战.  相似文献   

10.
锂金属具有最低的氧化还原电位(-3.04V vs标准氢电极)和极高的比容量(3860mAh·g^-1),是理想的锂二次电池负极材料.然而电化学循环过程中,由于锂的不均匀成核生长,其表面产生锂枝晶,锂枝晶持续生长会刺穿隔膜,造成电池短路甚至引发火灾.因此需要对锂金属负极进行保护,抑制负面问题,发挥高性能.人造固态电解质界面技术是一种有效的锂金属负极保护策略,本质是预先在锂金属表面涂覆上保护层,保护层具有较高的离子传导性和电化学稳定性、较好的阻隔性和机械强度,可得到高效率、长寿命和无枝晶的锂金属负极.本文将近年来人造固态电解质界面在锂金属负极保护中的研究进展进行综述,对其制备方法、结构特点、锂金属负极循环性能、全电池电化学性能等方面作了详细介绍,分析当前存在问题并指出锂金属负极研究不仅需要加深机理研究还得与实际应用相结合.  相似文献   

11.
Due to the technology advancement and the large-scale application of lithium-ion batteries in recent years, the market demand for lithium is growing rapidly and the availability of land lithium resources is decreasing significantly. As such, the focus of lithium extraction technologies has shifted to water lithium resources involving salt-lake brines and sea water. Among various aqueous recovery technologies, the lithium ion-sieve (LIS) technology is considered the most promising one. This is because LISs are excellent adsorbents with high lithium uptake capacity, superior lithium selectivity and good cycle performance. These attributes have enabled LISs to separate lithium effectively from aqueous solutions containing different ions. The present work reviews the latest development in LIS technology, including the chemical structures of ion-sieves, the corresponding lithium adsorption/desorption mechanisms, the ion-sieves preparation methods, and the challenges associated with the lithium recovery from aqueous solutions by the LIS batteries. Besides, some common LIS composite materials forming technologies, including granulation, foaming, membrane and fiber formation, and magnetization, which are used to overcome the shortcomings in industrial column operations, are also explored.  相似文献   

12.
The ionic conductivities of samples of lithium orthosilicate containing up to 50 mole % of lithium phosphate have been measured by both a c and d c techniques. Results indicate a large enhancement in lithium ion conduction due to the presence of the phosphate, making these materials attractive candidates for use as solid electrolytes in applications such as battery systems.  相似文献   

13.
Wang  Chunhua  Bai  Guoliang  Yang  Yifu  Liu  Xingjiang  Shao  Huixia 《Nano Research》2019,12(1):217-223
Nano Research - Dendrite formation on lithium (Li) metal anode is a key issue which hinders the development of rechargeable Li battery seriously. A novel method for suppressing Li dendrites via...  相似文献   

14.
Lithium nitride chloride (Li1.8N0.4Cl0.6) crystallizes in a defect anti-fluorite structure with 10% of the lithium sites being vacant. Its electrical conductivity and thermodynamic stability have been investigated in the temperature range from 25 to 400° C. Lithium ions are the predominant charge carriers, yielding a conductivity temperature product of σ T = 7.456 × 104 exp(?0.495 eV/kT) Ω?1 cm?K. The electronic contribution to the total conductivity is smaller by a factor of less than 10?4. The material is thermodynamically stable against pure metallic lithium and has a decomposition voltage larger than 2.5 V.  相似文献   

15.
Knoop microhardness measurements were made on the (11.0), (01.0) and (00.1) planes of the trigonal isostructural compounds lithium niobate and lithium tantalate. The data indicate uniform hardness in the 〈11.0〉 and 〈01.0〉 directions and greater hardness in the [00.1] direction. In accordance with previous findings of hardness anisotropy in materials with hexagonal crystal structure, the present data indicate preferred slip on basal planes. The ratio of hardness to the shear modulus C 66 is close to 0.1, which is usually found in covalent-bonded solids.  相似文献   

16.
介绍一种新型的可用于锂离子电池的锂盐:LiODFB(lithium oxalyldifluoroborate).LiODFB独特的化学结构,使其结合了双乙二酸硼酸锂(LiBOB)及四氟硼酸锂(LiBF4)的优势.与LiBOB相比,LiODFB在碳酸酯中的溶解性和溶剂的黏度有了明显改善,从而使锂离子电池具有更好的低温性能和倍率放电性能.而与LiBF4相比,LiODFB能促进稳定固态电解液界面(solid electrolyte interface,SEI)的形成,改善了锂离子电池的高温性能.该种新型锂盐还具有以下优点:与金属锂的化学稳定性好,在高电位下能够很好地使铝箔得到钝化和提高锂离子电池安全性能及抗过充的能力.这些性能使得LiODFB成为一种极有可能替代LiPF6的新型锂盐.  相似文献   

17.
18.
锂金属具有低的氧化还原电位(-3.04 V vs标准氢电极)和高比容量(3860 mAh/g),是理想的锂二次电池负极材料.由金属锂负极/固态电解质/嵌锂正极组装的固态锂电池,有望成为未来航空航天、机器人、高端电子和电动汽车等相关技术产业的动力源.然而,在充放电过程中,由于锂的不均匀沉积-溶解造成锂与电解质接触面产生大量树枝状枝晶,并沿着电解质方向不断生长,最终造成电池内部短路而失效.使用较高杨氏模量的固态电解质,可以很大程度上阻挡锂枝晶的生长,但仍不能满足电池长循环和安全性的要求.此外,金属锂与固态电解质表面是固固接触,造成了界面电阻大以及金属锂与固态电解质的界面反应等问题,这严重阻碍了固态锂金属电池的发展与使用.本文综述了近年来基于固态电解质的金属锂电池抑制锂枝晶生长和提高固固界面相容性的相关策略,并对金属锂/固态电解质界面设计的发展趋势进行展望.  相似文献   

19.
Observations of electron damage occurring in LiF single crystals within an electron microscope are recorded. A number of irradiation-induced defects, similar to those reported by other workers were observed, but a new feature is the identification, by electron diffraction, of Li2O distributed in precipitates and as a dispersed phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号