首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The efforts to ensure the manufacturing reliability and reproducibility of composite parts must start with the implementation of proper quality assurance and well-established processing procedures. These procedures are required to determine the curing kinetics, thermal stability, and optimum cure cycles of a matrix resin. The next key step is then to precisely control the curing process. A sensor to monitor the cure state in real-time during composite curing is important to the future automation of composite manufacturing. The present report begins by briefly reviewing the techniques for quality assurance and processability assessment. Also concisely presented are the concepts of cure environment modeling and expert systems, which are followed by a discussion on the various methods that are more feasible for in-process cure monitoring and management. This report also summarizes our efforts in cure sensor research and concludes by pointing out future research directions in cure control during composite manufacturing.  相似文献   

2.
为研究制件成型过程中的层间滑移情况及固化后的回弹变形,首先,利用自行开发的热隔膜成型装置制备了热固性树脂基复合材料C型制件。同时,针对热隔膜成型过程建立了三维数值仿真模型;该模型由3个复合材料固化过程子模型构成,包括热-化学模型、层间滑移模型和固化变形模型。然后,在此基础上将固化过程中复合材料性能的时变特性引入到仿真模型中,并将仿真结果与文献中的实验结果进行比较。最后,利用建立的仿真模型对热隔膜成型过程进行了数值模拟,并与实验进行比对,重点研究了成型过程中温度、固化度分布、层间滑移以及固化变形情况。所得结果证明所建立的数值模型对热隔膜成型过程的预测具有较高的可靠性及准确性,可以为后续热隔膜成型参数优化和模具修正提供参考。   相似文献   

3.
为了研究树脂基复合材料曲面结构件的固化变形过程,首先分析了碳纤维增强树脂基复合材料在固化过程中密度、模量、热膨胀系数、比热容及热传导系数等材料物性的变化,并将这些变化引入到数值模拟当中。接着,针对复合材料复杂曲面结构件,提出了利用定常流动的流线方程构建曲线坐标系的新方法。然后,根据建立的曲线坐标系,运用有限元法计算了某轻型飞机机翼上蒙皮板在固化过程中内部温度、固化度和内应力的分布情况以及材料物性随固化度的变化情况。最后,计算了由于内部温度场和固化度场的不均匀、热膨胀系数的各向异性和固化引起的树脂体积收缩而导致的结构变形。结果表明:引入材料物性变化使固化过程的数值模拟更加合理、模拟结果更加精确,利用定常流动的流线方程构建的曲线坐标系适用于复合材料曲面结构件的有限元分析。所得结论对研究树脂基复合材料的固化变形过程和各向异性复合材料复杂曲面构件的三维实体建模均具有指导意义。  相似文献   

4.
Control and optimization of curing process is very important for the production of high quality composite parts. Crosslinking of molecules of thermoset resin occurs in this phase, which involves exothermy of reaction, chemical shrinkage (Sh) and development of thermo-physical and thermo-mechanical properties. Exact knowledge of the evolution of all these parameters is required for the better understanding and improvement of the fabrication process. Sh is one such property of thermoset matrix, which is difficult to characterize due to its coupling with thermal expansion/contraction. A number of techniques have been used to determine volume Sh of thermoset matrix, which later on has been used to find tensor of Sh for the simulation of residual stresses and shape distortion of composite part, etc. Direct characterization of volume Sh of composites has also been made by some authors. Though not much, but some work has also been reported to determine the Sh of composite part in a specific direction. In this article, all the techniques used in the literature for the characterization of Sh of resin and composite are reported briefly with their respective advantages, disadvantage and important results.  相似文献   

5.
树脂基复合材料经常与金属材料固化在一起使用。用缠绕方法制备了复合材料单向板, 将光纤布拉格光栅(FBG) 埋入复合材料与铝板之间, 监测两种不同的材料在固化过程中界面的性质, 并与复合材料内部的监测结果相比较。监测结果表明, 光纤布拉格光栅准确地监测到了复合材料固化过程的温度历程, 复合材料内部、铝板和复合材料的界面在固化过程中和固化后应变存在着明显的差异。光纤光栅传感器为两种不同材料之间的固化监测提供了工具, 对界面性质的分析提供了新方法。   相似文献   

6.
Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.  相似文献   

7.
《Composites Part A》2007,38(3):994-1009
Resin Transfer Moulding (RTM) has great potential as an efficient and economical process for fabricating large and complicated composite structural components. The low capital investment cost required and process versatility in component integration and assembly make RTM very attractive for high volume automotive applications. One of the challenges facing the automotive field is the resulting surface finish of manufactured components. The shrinkage associated with the curing of thermoset resins contributes to the poor surface quality. Low profile additives (LPA) are added to the resin to compensate for the cure shrinkage; however their effects on the thermal, rheological and morphological properties of polyester resins are not well understood. In this paper, the effect of LPA on cure kinetics, cure shrinkage and viscosity of a polyester resin is studied through differential scanning calorimetry (DSC) and special rheological techniques. Models are developed to predict cure shrinkage, LPA expansion, cure kinetics and viscosity variations of the resin as a function of processing temperature. Finally, morphological changes in the resin with and without LPA, during isothermal cure, are studied with hot stage optical microscopy. The results show that the LPA content in the range tested had no significant effect on the cure kinetics. However, higher LPA content reduced cure rate and cure shrinkage. A minimum of 10% LPA was required to compensate for cure shrinkage. Shrinkage behavior of all formulations was similar until a degree-of-cure of 0.5. However, resin formulations with higher LPA content showed expansion at later stages during curing.  相似文献   

8.
Cure monitoring is an important tool for ensuring manufacturing reliability and reproducibility of composite parts. Among a variety of techniques, electrical measurements are used. However, electrical values are affected by cure cycles and by the rheological and geometrical parameters during curing. All these parameters must be taken into account to establish electrical models. The present paper proposes to study the changes in the geometrical parameters of an oven-cured composite made of T700/M21 prepregs during curing. For this work, microstructural analyses (in the three orthotropic planes) were carried out using specific curing, i.e. by releasing the vacuum at characteristic points (time and temperature). The following parameters were measured (manual and automatic approaches): ply, inter-plies and global thicknesses; percolation parameters; and volume and surface ratios (fibres, matrix and voids). The parameters obtained will be used in future works to define an electrical model for real-time control of the cure process.  相似文献   

9.
The role of tool-part interaction in process-induces warpage of a large composite structure was studied using a three-dimensional process model, developed by integrating sub-models that describe the evolution of cure and properties of composite as well as various physical phenomena encountered, during autoclave processing. The process model was implemented through user sub-routines interfaced with the finite element software, ABAQUS. The tool-part interaction during processing was modeled using contact elements. The predicted temperature and warpage of an aircraft part, using a frictional tool-part interface and experimentally measured cure-dependent tool-part interfacial friction coefficients, compared very well with experimental temperature and warpage, validating the 3-D process model. A comparison of predictions using various models for the tool-part interface suggests that the two components of tool-part interaction that contribute to warpage are change in shape of the tool and part, and process-induced stress caused by constrained deformation of the tool and the part.  相似文献   

10.
In-field repair of composite aircraft is often performed in difficult conditions and hence needs to be as simple as possible. Current repair techniques generally involve the application of composite patches based on thermosetting epoxy resin via either wet lay-up, prepreg stacking over a film adhesive, or bonding precured patches. These methods of repair are very effective, but a complex cure cycle under controlled conditions is required and the use of epoxy resin means that storage must be taken into consideration. Composites patches based on thermoplastic resins overcome both of these problems; they do not require curing, and have no special storage needs. Thermoplastics can also be thermoformed and can hence be produced in sheet form and formed to the correct shape in situ during adhesive bonding to the surface to be patched, using vacuum and heat. With its low thermoforming temperature and good mechanical properties, polycarbonate is a good candidate for use as a thermoplastic matrix, with woven carbon fibre fabric as the reinforcement to produce patch laminates. The present paper describes the use of solution impregnation together with film stacking to produce patches of acceptable quality and how these patches were formed without any wrinkling using double diaphragm forming.  相似文献   

11.
Evolution of cure, mechanical properties, and residual stress during E-beam (Electron Beam) processing was studied to evaluate the influence of process parameters – dose and dose per pass – using an epoxy reinforced with IM7 carbon fibers. The composite prepreg was also cured thermally to various cure levels and compared with the E-beam cured composite. Cure evolution changed substantially with irradiation condition; lower dose/pass and wider scanning width of the beam (for the same dose/pass) resulted in rapid curing. For a given degree of cure, the longitudinal (E11) and transverse (E22) moduli of the E-beam cured composite varied with dose/pass and were less than that of the thermally cured composite. Transverse strength and failure strain of the composite cured at 20 kGy/pass were higher than that of composites cured thermally and at other dose/pass conditions. E-beam curing resulted in lower residual stresses than thermal curing and lower dose per pass resulted in lower cure-induced residual stress than higher dose/pass.  相似文献   

12.
光纤模斑传感器应用于在线监控复合材料工艺过程   总被引:3,自引:2,他引:1       下载免费PDF全文
复合材料的固化有着复杂的内部过程, 传统的工艺条件难以保障产品的质量, 发展智能化的在线监控技术是个有效途径, 在线监控系统需要有先进的传感器。研制了一种新型光纤传感器, 提出通过测量光纤末端近场模斑谱反映光纤埋置周围树脂折射率的变化。给出了利用这种传感器进行复合材料固化监测的实验结果。发现这种光纤传感器的信号能反映固化凝胶点、固化结束点及树脂粘度的最低点, 又由于光纤与复合材料的兼容性好以及装置简单、廉价、可靠性高, 因此可以应用于复合材料固化过程的在线监控系统。  相似文献   

13.
针对热固性树脂基复合材料固化过程中各种复杂的物理化学变化之间的相互影响,建立了基于材料性能时变特性的复合材料固化过程的二维多场耦合计算模型。该模型由已知的3个经典复合材料固化过程子模型构成,包括热-化学模型、树脂黏度模型和树脂流动模型。在此基础上,将固化过程中材料性能的时变特性引入多场耦合计算模型中。通过与文献中实验结果的比较,证明了所建立的模型具有较高的可靠性。对AS4/3501-6复合材料层合平板的固化过程进行了数值模拟,重点研究了固化过程中纤维体积分数变化及材料参数的时变特性对固化过程中温度、固化度和树脂压力等参量的影响。分析结果表明:考虑纤维体积分数变化和材料性能的时变特性后,固化过程中复合材料层合板中心温度峰值明显减小,树脂压力随时间的变化将有所滞后。  相似文献   

14.
低温固化高性能复合材料技术   总被引:3,自引:0,他引:3  
主要综述了低温固化高性能环氧复合材料技术和低温固化耐高温复合材料技术的发展及其应用现状。对于低温固化环氧复合材料,主要介绍了环氧复合材料的低温固化剂技术、低温固化环氧复合材料固化特性、力学性能和低温固化环氧复合材料的应用等。对于低温固化耐高温复合材料,主要介绍了可在高温环境下长期使用的低温固化聚酰亚胺复合材料。  相似文献   

15.
In recent years, the continuous progression of ultra-large scale integration has driven the emergence of technological solutions. In particular, major challenges have been faced for the fabrication of interconnect structures, where ultra low dielectric constants are required to decrease the parasitic capacitances between metal lines. Porous material, obtained using the porogen approach, is the main candidate investigated. The curing process is critical for achieving a good control of final film structure. The integration of such material requires a good chemical and mechanical stability, particularly to maintain the structure integrity during the stressing steps: chemical mechanical polishing and packaging. In this work, Ultraviolet assisted thermal cure (or UV curing) is investigated as an alternative solution to the conventional thermal curing. Chemical and physical analyses reveal that the best porogen removal efficiency and the enhancement of matrix crosslinking are achieved when the material is UV cured. This crosslinking improvement (as indicated by higher Si-O-Si bond density in the fourier transformed infra-red spectra) can be correlated to better mechanical properties. Significantly better electrical properties (dielectric constant, leakage current and breakdown voltage) are obtained with better integrity (no moisture uptake after 1 week storage in humid atmosphere 85 °C/85% relative humidity) when the dielectric is optimally cured. Porosity evaluation reveals similar results between both curing processes with slightly larger pore size in the case of the UV cured film. Finally, a basic model is described to illustrate how the UV assisted thermal cure may improve the crosslinking in comparison to the thermal curing. Selective UV action is proposed to explain the curing process kinetics.  相似文献   

16.
通过对复合材料固化度和温度相关黏弹性本构方程的分析,定义一个能综合反映固化度和温度等对复合材料黏弹性性能影响的无量纲参数De_m。当参数De_m都大于10~2时,复合材料基体处于流动状态;当参数De_m都小于10~(-2)时,复合材料为弹性状态;仅当部分参数De_m小于10~2而大于10~(-2)时,复合材料处于黏弹性状态。以AS4纤维/3501-6树脂复合材料为例,基于对其参数De_m在典型固化工艺过程中的演化,研究该复合材料黏弹性性能的发展过程,发现基于参数De_m分析得到的凝胶点时间与实验结果一致。根据复合材料黏弹性性能对残余应力发展的影响,将复合材料残余应力计算分为流动阶段和黏弹性阶段,并建立了相应的状态相关黏弹性本构模型。最后通过与原始模型预测结果的比较验证了提出的本构模型,表明本文提出的计算方法与原始黏弹性本构模型计算结果一致,但大大降低了计算所需的时间和存储空间。  相似文献   

17.
Elevated temperature post curing is one of the most critical step in the processing of polymer composites. It ensures that the complete cross-linking takes place to produce the targeted properties of composites. In this work infrared radiation (IR) post curing process for glass fiber reinforced polymer composite laminates is studied as an alternative to conventional thermal cure. Distance from the IR source, curing schedule and volume of the composite were selected as the IR cure parameters for optimization. Design of experiments (DOE) approach was adopted for conducting the experiments. Tensile strength and flexural strength of the composite laminate were the responses measured to select the final cure parameters. Analysis of variance (ANOVA), surface plots and contour plots clearly demonstrate that the distance from the IR source and volume of the composite contribute nearly 70% to the response functions. This establishes that polymer composites cured using IR technique can achieve the same properties using only 25% of the total time compared to that of conventional thermal curing.  相似文献   

18.
Interfacial properties and cure monitoring of single-carbon fiber/thermosetting composites by thermal and different ultraviolet (UV) curing processes were investigated using electro-micromechanical test and electrical resistance measurement. During curing process the residual stress was monitored in terms of the electrical resistance and then they were compared to various curing conditions. In thermal cure the tensile strength and modulus of epoxyacrylate matrix were higher than those of UV cure, whereas the failure strain was lower. Interfacial shear strength (IFSS) increased gradually with elapsing UV exposing time and then saturated. For thermal cure the IFSS was significantly higher than that of UV cure, and cure shrinkage was observed due to matrix shrinkage and residual stress due to the difference in thermal expansion coefficient (TEC). The difference in electrical resistance, ΔR during thermal curing was larger than that of UV cure. In thermal cure apparent modulus indicating embedding matrix modulus and interfacial adhesion was highest and reaching time up to same stress was shortest. Thermal cure showed the strong durability against the IFSS deterioration after boiling test compared to UV cure.  相似文献   

19.
针对厚截面复合材料固化过程温度峰值过大所引起的材料力学性能降低及残余应力过大等问题,建立了基于多场耦合方法的复合材料固化过程多目标优化模型,用以降低固化温度峰值和缩短固化时间。首先建立包含热化学子模型、树脂黏度子模型和流动压实子模型的固化温度多场耦合模型,用以准确描述固化过程复合材料内部温度及构件厚度的演化规律。通过与文献中已有实验结果比较,证明所建立的多场耦合模型的有效性。在该多场耦合模型基础上,引入径向基(RBF)神经网络作为代理模型,利用多目标优化方法,对固化工艺参数进行最佳组合匹配。研究表明,温度峰值与保温平台温度变化呈明显非线性关联,这与复合材料固化过程的非线性特性有很大关系。在保温温度层面,为了降低温度峰值,需要提高第一阶段的保温温度,降低第二阶段的保温温度,同时在保温平台的时间上进行调整,以缩短固化时长。相比较于原有固化工艺制度,本文提出的优化方法可以显著降低厚截面复合材料层合板的固化时长和温度峰值。   相似文献   

20.
针对复合材料制件在成型过程中的固化变形这一关键技术问题,通过在模具与复合材料制件之间引入剪切层的方法,建立了预测复合材料制件固化变形的解析计算模型和有限元仿真模型。剪切层的剪切模量用来衡量固化过程中模具与复合材料制件之间的相互作用,其数值大小通过与实验数据进行比对而得到。基于建立的固化变形模型,与文献中已有的实验结果进行了比较。结果表明:所建立的模型具有较高的可靠性。同时针对L型复合材料制件建立了三维有限元仿真模型,模型中除考虑材料各向异性和化学收缩效应以外,还将成型过程中模具与复合材料制件间的相互作用考虑在内。模拟结果表明:引入模具作用后L型零件的固化变形预测结果更加准确。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号