首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 826 毫秒
1.
利用农业废弃物进行生物制氢,生物质产生的氢被认为是最清洁的燃料,其与甲烷和化石燃料燃烧产物比较,燃烧的副产品只有水.产氢菌通过其耐热特性进行分离.影响产氢菌产生氢气的因素有:pH、温度、基质浓度和生物量比例等.研究显示:当以30%的葡糖糖作为基质、温度为40℃、pH为4.3时,产氢效率最好.其结果为进一步研究提高批反应及连续厌氧产氢效率提供支撑.  相似文献   

2.
模拟淀粉废水厌氧发酵生物制氢   总被引:6,自引:0,他引:6  
采用连续流和静态试验进行了模拟淀粉废水厌氧发酵法生物制氢,探讨了有机负荷(OLR)和pH值对产氢能力和液相末端产物的影响。在连续流反应器中,发酵气体产量和氢产量随负荷的增加而升高;当发酵类型为乙醇型,pH 3.9,有机负荷率为22.0 kg COD/(m3·d)时可同时获得最大气体产量和氢气产量;最大比氢产率为87.5?ml H2/g淀粉。在静态试验中,初始pH值在3.5~4.3时,氢气产量随着pH值增加而增加;pH值范围在4.3~5.0时氢气产量先是下降随后保持稳定,pH?4.3时获得最大氢气产量,最大比氢产率为80?ml H2/g淀粉。结果表明,淀粉废水可以作为厌氧发酵法生物制氢底物。  相似文献   

3.
美国俄勒冈州立大学的研究人员研发一种环保新技术.可以从普通城市污水等生物废弃物中制取氢气.并且其成本比现有的“电解制氢”技术低很多。这项技术有可能应用于为氢燃料电池汽车提供燃料。  相似文献   

4.
基于Cu-Zn/Al_2O_3-ZrO_2催化剂的甲醇水蒸汽重整制氢试验   总被引:1,自引:0,他引:1  
模拟内燃机尾气余热在非贵金属催化剂Cu-Zn/Al2O3-ZrO2的作用下,进行甲醇水蒸汽重整制氢试验.采用自行设计的燃料重整制氢装置,通过调整燃料重整的试验条件来提高产氢率,并得到较优的重整制氢方案.结果表明:反应温度是甲醇水蒸汽重整反应中最关键的因素,重整气中氢气的体积分数随着温度的升高而逐渐加大.空速会直接影响反应原料滞留在催化剂表面的时间,因此空速为最小值376 h-1时,重整制氢效果更好.最佳的水醇物质的量比和原料流量分别为6∶1和0.4 mL/min.在最佳的试验条件组合下,当反应温度为600℃时,重整气中氢气的体积分数可以达到56.61%.因此,基于Cu-Zn/Al2O3-ZrO2催化剂的车载甲醇水蒸汽重整制氢技术具有实际应用的可行性.  相似文献   

5.
为使高效产氢产气肠杆菌能够运用到实际生产中,探索并且优化以小球藻抽脂残留物的水解产物为底物的厌氧批次产氢发酵实验参数.采用中心组合设计,通过三次平行实验取得的数值,拟合得到反映温度、接种量和p H值与产氢量之间关系的多元二次回归模型,以产氢率为响应值,进行响应面分析.方差分析结果显示,该模型的显著性和可靠性较高,拟合效果良好.该模型预测出最佳产氢结果为54.22 m L/g小球藻抽脂残留物,产氢条件为温度37.55℃,接种量12.25%,p H值5.95.进行了厌氧批次发酵产氢验证实验,实际结果为小球藻抽脂残留物的产氢量为54.61 m L/g,与预测值十分接近,说明该模型能较好反应三因素对产氢量的影响.优化了高效产氢菌利用廉价底物发酵产氢的运行条件,为实现生产氢气的过程与有机废弃物无害化处理相耦合提供了新思路.  相似文献   

6.
生物质燃料电池与生物制氢技术正在飞速发展.生物质燃料电池在有机废物和废水的处理领域非常实用,可以将有机物转化成生物质能源,用来处理生活有机垃圾和废水.近期,世界最新研究领域之一的便是在生物质反应器中接种光合细菌和氢化细菌,并使之能够与生物质燃料电池相结合,利用监控系统来控制生物反应器和生物质燃料电池的反应.本试验的目的是在可变操作条件下测试生物反应器和生物质燃料电池(PEFC)联合系统的产流能力.嗜温梭菌是由牛粪中分离出并接种到反应器中生产氢气,氢气的产生由微型气相色谱仪测定,当氢气浓度达到80%视为达到稳定状态.生物质燃料电池在较低的压力下进行,在高于3 k Pa的环境中产生稳定的电流3.5 m A和稳定的电压0.65 V,平均发电量为25 W.同时,用有限元分析了阳极上的氢浓度分布.  相似文献   

7.
为实现生物柴油副产物甘油在制氢行业的发展,以流化床甘油重整制氢为研究对象,基于双流体模型和颗粒动力学理论,结合甘油重整反应动力学模型,并嵌入二氧化碳吸附动力学模型和氢气膜分离模型来描述两种强化重整方法的作用. 对流化床反应器生物甘油强化重整制氢过程开展了数值模拟,对反应器内颗粒浓度、组分浓度、温度进行预测,探究重整过程中气固两相流动与反应特性,分析氢气膜分离和二氧化碳吸附两种强化重整方法的相互作用规律,评价操作参数对重整性能的影响. 结果表明:二氧化碳吸附可以抑制浓度极化阻力,提高氢气渗透速率;吸附剂与催化剂比例为1∶1时,与没有吸附剂相比,氢气相对产量提高了5%;氢气分离膜厚的减少会进一步提高二氧化碳吸附速率,当膜厚从300 μm减少到30 μm时,吸附速率提高1.4%;催化-吸附双功能颗粒的使用可以加强二氧化碳的吸附水平,同时促进氢气分离过程,相较于无吸附强化,氢气渗透量提高了近20%.  相似文献   

8.
生物甘油水蒸气重整制氢强化过程的参数评估   总被引:1,自引:1,他引:0  
为深入分析生物甘油水蒸气自热重整制氢强化过程以实现高效制氢,采用吉布斯自由能最小原理,研究氢气分离与二氧化碳吸附两种强化手段对甘油自热重整过程的影响,分析氢气产量、积碳量与反应热随温度、氢气分离系数等参数的变化规律.结果表明:氢气的分离会大大提高氢气的产量,抑制甲烷的生成,但会导致积碳量增加.氢分离会增加对反应热的需求,为达到自热,需要更高的氧气-甘油投料比.氧化钙作为二氧化碳吸附剂,在750 K以下由于生成氢氧化钙而降低氢气的产量;当温度高于800 K时,碳酸钙分解会降低吸附剂对二氧化碳的吸附能力,故氧化钙的吸附温度应控制在750~800 K.二氧化碳吸附所放出的热量可以使甘油重整实现自热.  相似文献   

9.
氢气随车携带不便,为了能在线产生富氢气体供给内燃机燃烧,并大幅度提高内燃机的热效率,降低排放,降低热、噪声的污染,提出应用内燃机尾气余热对甲醇进行催化重整以产生氢气的方法.设计了一套内燃机余热甲醇催化重整制氢装置,在内燃机排气余热和催化剂的共同作用下,把甲醇水溶液重整成富氢气体.重整反应器为蜂窝陶瓷载体,重整催化剂为Cu/Zn/Al/Zr,采用管式换热器对载体进行加热,甲醇水溶液在载体孔道中发生催化重整反应.实验结果表明:随着发动机排气温度的增加,重整器产氢率提高,在排气温度为350℃时,重整气中氢气的体积分数达到41.9%.达到了实验预期要求.  相似文献   

10.
乙醇水蒸气重整制氢的车载应用不但可在线产生富氢气体,解决氢气的储运问题,还可实现混富氢气燃烧,降低排放.为得到较优的重整制氢方案,模拟内燃机尾气温度条件,在燃料重整试验台上实现乙醇的水蒸气催化重整制氢过程.在不同催化剂Cu49Zn21Al18Zr12和Pt/CZO/Al2O3条件下,考察了反应温度、水醇摩尔比和空速对重整气中φ(H2)的影响.研究表明:当反应温度为723~973 K、空速为720 h-1、水醇摩尔比分别为6∶1和4∶1时,二者φ(H2)的平均值分别为47.78%和40.26%.催化剂Pt/CZO/Al2O3重整制氢的产量高于Cu49Zn21Al18Zr12,尤其是在823 K以上的高温区域.但是与Pt/CZO/Al2O3相比,Cu49Zn21Al18Zr12成本低廉,在873 K以上的温度区域,重整气中φ(H2)也相当高.因此,基于Cu49Zn21Al18Zr12催化剂的乙醇水蒸气重整对于车载制氢更加具有可行性.  相似文献   

11.
基于Pt/CZO/Al2O3催化剂的PRF93水蒸气重整制氢   总被引:1,自引:0,他引:1  
模拟内燃机尾气余热对PRF93燃料(体积分数93%的异辛烷和7%的正庚烷)进行水蒸气催化重整制氢试验.采用自行设计的催化重整制氢装置,调整催化重整参数以提高产氢率,同时利用正交试验法优化试验设计.结果表明,当催化重整温度为650℃、载气体积空速(GHSV)为196 h-1、去离子水与PRF93的体积流量比(水PRF93比)为0.30∶0.12时效果最佳,此时重整气中氢气的体积分数可以达到54.23%,一氧化碳的体积分数可以达到19.44%.  相似文献   

12.
厌氧发酵生物制氢试验研究   总被引:5,自引:0,他引:5  
在摇瓶试验的基础上,利用经预处理的牛粪堆肥作天然厌氧微生物菌种来源,对模拟有机废水的生物制氢研究进行了小规模实验.结果显示:在实验条件下,反应器具有140 mL /(L·h)的持续产氢能力,平均氢含量50%左右,COD的平均去除率30%左右;蔗糖产氢能力17 4 mL/g ,效果显著,为该生物制氢研究在工业发展中的可行性提供了理论依据.  相似文献   

13.
氢气以清洁燃烧的特点成为理想的发动机代用燃料.为研究不同喷氢时刻下氢发动机混合气形成的过程,应用AVL Fire软件建立进气道燃料喷射氢发动机的三维仿真模型.分析缸内外浓度场、速度场的变化规律,从抑制回火等抑制异常燃烧的角度,综合评价混合气的形成状况.并以混合气均匀性系数、有效喷氢率为指标优化了高速、大负荷工况下进气道喷射氢发动机的喷氢时刻.  相似文献   

14.
硼氢化钠水解制氢规律及工艺条件研究(Ⅰ)   总被引:1,自引:0,他引:1  
在自行开发设计的硼氢化钠水解制氢实验装置上,采用单因素及正交实验研究,对反应的影响因素进行探讨,并运用极差分析和方差分析的方法综合讨论影响氢产率的工艺条件.实验结果表明:反应温度、反应时间、反应物浓度与催化剂用量比的交互作用、催化剂用量比对氢产率均有一定影响.当选用CoCl2作为催化剂,反应温度为40℃,反应时间为25 min,反应物质量分数为5%,m(催化剂)/m(反应物)为0.126,溶液pH值为7时,氢产率可达96%.  相似文献   

15.
连续流生物发酵制氢操作参数的优化研究   总被引:2,自引:0,他引:2  
采用20 L连续流搅拌罐式反应器(CSTR),通过设计正交试验对厌氧发酵制氢的温度(T)、水力停留时间(HRT)、pH、C/N比等操作参数进行优化.结果表明,适当条件下产氢速率、氢气含量、葡萄糖利用率、转化率最大分别达6.00 L/h、55.0%、99.0%、157.86 mL/g.最佳pH、T、HRT、C/N比分别是5.0、33.5~36.5℃、8.34 h、112/1.55.取最佳参数进行验证实验,进一步得出最佳温度为35.5℃,产氢速率、氢气含量、葡萄糖利用率、潜在最大葡萄糖转化率分别为5.66 L/h、54.0%、0.97、191.18 mL/g.验证实验所得结果优于正交试验中的任一单个试验结果,这表明正交试验是成功的.  相似文献   

16.
为了综合评估进气道喷射(PFI)氢内燃机异常燃烧风险,基于层次分析法(AHP)构建了异常燃烧风险系数模型,分别探究喷氢参数对指标层(异常燃烧特征参数)及目标层(异常燃烧风险系数)的影响. 结果表明:通过改变喷氢参数,可以使进气道残余氢气量下降33.4%~41.6%,显著降低了回火的可能性. 当喷氢角度为30°~45°、喷氢流量为4.36~4.96 kg/h时,缸内混合气均匀性系数较大,有利于组织燃烧,却不能保证炽热区域温度等参数处于较低水准. 所构建的异常燃烧风险系数模型能够结合多个特征参数对氢内燃机异常燃烧(早燃及回火)风险进行有效评估. 当喷氢角度为45°、喷氢流量为4.96 kg/h时,各项特征参数均处于合理区间,异常燃烧风险系数下降了3.6%~6.8%,降低了异常燃烧的可能性.  相似文献   

17.
近期和未来一个时期内制氢将主要依靠化石燃料,因此也就存在一个潜在的CO2排放问题.常规的CO2收集和储存方法不仅成本高,而且从生态方面来讲也不是一个可靠的解决方法.旨在探索化石燃料制氢所涉及的能源和环境问题的解决方法,探讨了大规模催化分解天然气制氢和碳的技术性、环保性和经济性等方面的问题.碳产品主要被用于建筑材料、直接碳燃料电池发电、土壤改良和环境治理等方面.以化石燃料为基础的"氢-碳"经济格局为目前的碳氢化合物经济到未来最终的可再生氢能经济提供了一个平稳的过渡.  相似文献   

18.
不同预处理方法对剩余污泥厌氧发酵产氢的影响   总被引:3,自引:1,他引:2  
对种泥进行预处理,能去除不产芽孢的耗氢菌,可以达到加快有机废水发酵生物制氢系统启动进程,提高污泥产氢效能的目的.为寻求适宜的种泥预处理方法,利用摇瓶发酵实验,考察城市污水处理厂好氧活性污泥分别经酸、碱、热、曝气、CHCl3和二溴乙烷磺酸钠(BES)预处理后,其利用葡萄糖发酵产氢的特性.结果表明,在初始pH 7.0、葡萄...  相似文献   

19.
为了研究天然气-氢气混合燃料对发动机排放性能的影响,利用GT-Power软件建立了某天然气发动机的仿真模型,通过与试验值进行对比,验证了模型的准确性.研究了过量空气系数(λ),点火提前角(θig)和掺氢比对排放特性的影响.结果表明:当掺氢比为20%,λ为1.3,θig为24°CA时,发动机可获得较好的综合排放性能.  相似文献   

20.
采用经热(80℃,15 min)预处理的城市生活垃圾厌氧消化污泥为接种物,考察了在600 W、4 min微波预处理条件下,餐厨垃圾中温批式发酵产氢中比产氢率与pH值的关系。结果表明:餐厨垃圾发酵产氢的延迟时间λ、最大比产氢率、产氢率、生物气中氢气的最高体积分数分别为4.03 h、18.58 mL/(gVS.h)、254.89 mL/gVS、54.6%,具有较高的产氢能力;在餐厨垃圾的发酵产氢体系中,pH值与比产氢率之间存在着非常密切的关系。随着餐厨垃圾发酵酸化的进行(pH值降低),同一时刻与之相对应的比产氢率先增大,而后逐渐变小。根据发酵过程中比产氢率与pH值的变化及pH模型,求得动力学常数Rmax、KH、KOH的值分别为21.9 mL/(gVS.h)、1.63×10-5mo1/L和1.45×10-6mol/L(回归系数为0.773 0),并求得餐厨垃圾连续发酵产氢的最佳pH值为5.31。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号