首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了变形条件对GH690合金高温变形动态再结晶的影响。结果表明:GH690合金动态再结晶过程是一个受变形温度和应变速率控制的过程,在应变速率为0.001~1s-1的实验条件下,GH690合金获得完全动态再结晶组织所需的温度随变形速率的增大而升高;动态再结晶晶粒尺寸随变形温度升高而增大。采用力学方法直接从流变曲线确定了GH690合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式:εc=1.135×10-3Z0.14233。GH690合金的主要动态再结晶机制是原始晶界凸起形核的不连续动态再结晶机制(DDRX),而新晶粒通过亚晶逐渐转动而形成的连续动态再结晶机制(CDRX)则起辅助作用。  相似文献   

2.
通过热压缩实验,研究了Incoloy825合金在变形量为60%,温度为950~1150℃和应变速率0.001~1s-1范围内热变形行为。基于Arrhenius方程和Zener-Hollomon参数模型,建立该合金的本构方程模型。采用金相显微镜(OM)和电子背散射衍射(EBSD)技术研究了合金的组织演变规律。结果表明,随着变形温度的升高或应变速率的降低,DRX的百分含量增加。热变形过程中DRX既包括晶界弓起形核机制的不连续动态再结晶(DDRX)也包括渐进式亚晶旋转形核机制的连续动态再结晶(CDRX)。随着变形温度的升高或应变速率的降低DDRX增强而CDRX减弱。此外随着温度的升高或应变速率的降低,低角度晶界逐渐向高角度晶界转化。同时随机分布的Σ3孪晶界趋于均匀化,且对动态再结晶起促进作用。  相似文献   

3.
利用Gleeble-3800热模拟试验机对新型Co-Ni基高温合金进行热压缩试验,研究其在变形温度为950~1100℃、应变速率为0.01~10 s-1、真应变为0.693时的热变形行为和微观组织演变。结果表明,合金流动应力随变形温度的升高或应变速率的降低而减小。合金平均晶粒尺寸随变形温度的升高而增加,降低变形温度和提高应变速率可细化动态再结晶晶粒。基于EBSD和TEM分析表明,合金热变形过程中非连续动态再结晶(DDRX)作为主要动态再结晶(DRX)机制,孪晶形核作为辅助形核机制。  相似文献   

4.
在1123~1423 K、0.1~10 s-1条件下对18.7Cr-1.0Ni-5.8Mn-0.2N节Ni型双相不锈钢进行70%大变形量热压缩研究。利用OM、SEM和EBSD分析热变形组织。结果表明,铁素体动态再结晶(DRX)主要发生在1123 K较低变形温度,随应变速率增大,晶粒细化程度增加,晶粒不均匀程度减小。应变速率对铁素体DRX影响较大,而奥氏体DRX对变形温度更加敏感。在1223 K、10 s-1条件下,铁素体相发生了以小角度晶界(LAGB)向大角度晶界(HAGB)转变的连续动态再结晶(CDRX),而在1323 K、0.1 s-1条件下,奥氏体相以不连续动态再结晶(DDRX)为主。低应变速率条件下升高温度易诱发DDRX,而在高应变速率条件下易发生CDRX。在高温低应变条件下,奥氏体相晶粒取向主要为(001)和(111)再结晶织构,而铁素体相在(001)和(111)织构之间存在竞争关系。拟合获得临界应力(应变)并确定了其与峰值应力(应变)的关系。随着应变增加,热加工失稳区缩小,且稳定区逐渐向高温高应变速率方向移动,1323~1423 K、0.01~6.05 s-1的热参数条件最适合热加工。  相似文献   

5.
针对热挤压态FGH95合金进行变形温度为1050~1120 ℃、变形量为50%和70%、应变速率为10?4~1 s?1的热压缩试验,研究该合金动态再结晶(DRX)的组织演变和形核机制。结果表明:提高变形温度和降低应变速率可以促进小角度晶界向大角度晶界迁移,有利于动态再结晶晶粒的长大;变形温度和变形量对热挤压态FGH95合金的动态再结晶机理的影响不明显,而应变速率对动态再结晶机制影响较大;随着应变速率的增加,热挤压态FGH95合金由不连续动态再结晶机制逐渐转变为连续动态再结晶机制;热挤压态FGH95合金的动态再结晶以不连续动态再结晶形核机制为主,以连续动态再结晶形核机制为辅;在1050 ℃、1 s?1变形条件下,热挤压态FGH95合金发生连续动态再结晶形核。  相似文献   

6.
在应变速率0.01~1 s~(-1)、变形温度350~500℃下,通过平面应变热压缩实验研究了2195 Al-Li合金不同热变形条件下的动态再结晶(DRX)临界条件,对动态再结晶机制进行了讨论,并通过EBSD和TEM等手段分析了变形参数对不同类型动态再结晶行为的影响。结果表明,动态再结晶临界应变(ε_c)随着Zener-Hollomon参数值(Z)的降低而降低;动态再结晶在低Z值的变形条件下进行得更充分,以不连续动态再结晶(DDRX)为主,仅发现有少量的连续动态再结晶(CDRX);连续和不连续动态再结晶都更容易在低的Z值下形成,而几何动态再结晶(GDRX)在Z值升高到一定程度才出现,并且随着Z值的进一步升高而增加,几何动态再结晶在一定程度上增加了晶粒数目,从而使动态再结晶分数略有升高。  相似文献   

7.
Ti2448合金在不同应变速率下的高温变形机制   总被引:1,自引:0,他引:1  
通过对亚稳β-Ti2448合金进行Gleeble热模拟压缩实验,研究其在单相β区的高温变形机制。结果表明:Ti2448合金的高温变形机制与应变速率有关,在较低应变速率(10~(-3)~10~(-1)s~(-1))范围内,合金表现出初始应力峰值,随后逐渐软化直到达到稳态流变;其变形机制主要是形核和新晶粒长大的不连续动态再结晶(DDRX)。在较高的应变速率(1~63 s~(-1))范围内,合金首先表现出明显的硬化,随后略有软化,最后达到稳态;其变形机制主要是位错滑移主导的塑性变形,位错与晶界以及亚晶界之间的相互作用促使小角度晶界向高角度晶界的转变,表明变形机制为连续动态再结晶(CDRX)。  相似文献   

8.
采用热挤压工艺制备了新型高温IN690合金。采用Gleeble-3500热模拟试验机对IN690合金进行了等轴压缩试验,研究了不同温度、应变速率和变形量对IN690合金动态再结晶(DRX)的影响。采用金相显微镜和电子背散射衍射(EBSD)对IN690合金热变形前后的金相组织、晶粒取向、晶界分布和晶粒取向差进行了系统分析。试验得到的真应力-真应变曲线表明,随着温度的降低或应变速率的增加,IN690合金的流动应力增大。IN690合金变形过程中的软化机制主要是动态回复(DRV)和DRX;随着真应变的增加或应变速率的降低,大角度晶界所占比例增加,这是由于在大的真应变或低应变速率下的DRX形核所致。  相似文献   

9.
通过热压缩实验研究了ZL270LF铝合金在变形量为70%,温度为300~550 ℃,应变速率为 0.01~10 s-1范围的热变形行为,建立了流变应力本构方程模型,绘制出了二维热加工图,确定了最佳热加工区域,采用电子背散射衍射(EBSD)和透射电子显微镜(TEM)技术研究了该合金的组织演变规律。结果表明:ZL270LF铝合金的流变应力随变形温度的升高和应变速率的降低而降低,热变形激活能为309.05 kJ/mol,最优热加工区为温度470~530 ℃、应变速率为0.01~1 s-1。该合金在热变形过程中存在3种不同的DRX机制,即连续动态再结晶(CDRX)、不连续动态再结晶(DDRX)和几何动态再结晶(GDRX),其中CDRX是ZL270LF铝合金动态再结晶的主要机制。  相似文献   

10.
借助热压缩实验研究了变形温度、应变速率和变形量对铸态AZ31B镁合金热变形行为及组织演变的影响规律。结果表明:(1)峰值应力随着应变速率的降低和温度的升高而减小,主要的形核机制为晶界弓出形核、亚晶旋转形核、孪生诱发形核,以及连续再结晶;(2)低于400℃变形时,温度的升高有利于再结晶的发生及晶粒细化;高于400℃时,晶粒尺寸开始迅速增大;(3)在小于等于400℃变形时,低速率0.1 s~(-1)更有利于再结晶晶粒细化;当变形温度高于400℃时,中速率1 s~(-1)更有利于再结晶晶粒细化;(4)高温低速率变形时,变形量主要影响晶粒尺寸,而高温高速率变形时,变形量主要影响动态再结晶程度。  相似文献   

11.
基于CA算法的轧制工艺动态再结晶过程模拟   总被引:1,自引:1,他引:0  
为研究低碳钢轧制变形过程的组织演化,建立了一套奥氏体动态再结晶模型。利用CA算法,基于Deform研究了热轧过程中的再结晶比率和晶粒尺寸的变化。结合变形条件对模型系数的影响,将模型计算所得的组织演变、再结晶体积分数、晶粒尺寸与实验进行了比较,证明了模型的有效性。  相似文献   

12.
开展了多阶段变形的方法对AZ3 1镁合金超塑性性能提升的研究。结果表明 :第一阶段动态再结晶的最佳条件是温度 3 0 0℃、应变速率 1× 10 - 3s- 1 、此条件下变形量为 5 0 %的时候 ,晶粒尺寸约为 10 μm ;在第二阶段 ,实验温度为40 0℃以及应变速率为 10 - 3s- 1 的变形条件下 ,获得最大延伸率 2 82 .1%。  相似文献   

13.
利用Gleeble-3500型热模拟试验机对BT25钛合金进行单道次等温压缩实验,分别采用Najafizadeh-Jonas加工硬化率模型和Cingara-McQueen流变应力模型研究了合金在变形温度1040~1100℃,应变速率0.001~1 s-1和最大压下率为60%的条件下动态再结晶的临界条件,分析真应力-真应变曲线,计算加工硬化率并建立了临界应变模型;同时通过线性回归法计算材料参数,构建JMAK动态再结晶动力学方程,并采用该模型模拟了BT25钛合金在热变形过程中动态再结晶行为。结果显示:流动应力表现出对应变速率和变形温度非常敏感;高温和低应变速率有利于DRX发生;有限元模型对DRX体积分数的预测误差在10%以内。该模型具有良好的预测能力,为工业生产中塑性变形和微观结构的预测提供了有效的工具。  相似文献   

14.
在轧制温度603~703 K、轧制压下量20%~40%、应变速率4~16 s-1下对AZ31镁合金进行轧制变形,研究轧制压下量、应变速率和变形温度对AZ31镁合金变形组织的影响,分析了镁合金的动态再结晶机制。结果表明:应变速率和变形温度不仅影响动态再结晶进行的程度,而且能够改变再结晶的方式或形核机制。当轧制应变速率= 13.9 s-1,变形温度T=603 K时,再结晶方式为孪生动态再结晶;变形温度升高到703 K时,沿晶界有链状新晶粒出现。当变形温度T= 673 K,应变速率= 11.35 s-1时,再结晶方式以孪生动态再结晶为主;应变速率降低到= 4 s-1时,再结晶方式以旋转动态再结晶为主。  相似文献   

15.
A dynamic recrystallization (DRX) cellular automaton (CA) model that can mark the microstructure with DRX circle was developed. The effects of initial grain size on the stress-strain curve, mean grain size and DRX fraction were mainly investigated, and the simulated results were compared with those obtained from previous researches. The results show that the shape of the stress-strain curve is sensitive, while the stress and mean grain size at the steady state are insensitive to the initial grain size. The transition from a multiple-peak stress-strain curve to a single-peak one can be explained by variations in DRX circle fraction, and the initial grain size to make this transition is between 70 and 80 μm.  相似文献   

16.
采用等温热压缩实验,研究了一种典型镍基高温合金在1010-1160oC及0.001-1s-1条件下的高温流变行为。结果表明在合金的高温变形过程中发生了动态回复(DRV)以及动态再结晶(DRX)现象。通过深入分析不同变形条件下合金的高温流变行为,分别建立了合金在加工硬化-动态回复阶段以及动态再结晶阶段的流变应力本构方程。其中,在动态再结晶阶段,流变应力本构方程的建立是基于一种新型的动态再结晶动力学方程,该方程中引入了最大软化速率应变。此外,采用线性拟合的方法,建立了本构方程中材料常数与Zener-Hollomon参数间的函数关系。同时,通过对比分析流变应力的实测值和预测值,并计算两者之间的相关系数(R)和平均相对误差绝对值(AARE),验证了所建立本构方程的准确性,它可以精确预测所研究合金的高温流变应力。  相似文献   

17.
在温度950~1200℃、应变速率0.13~6.5 s~(-1)及工程应变50%的条件下,利用Gleeble-3500~(TM)热模拟试验机对喷射成形GH738合金进行热压缩试验,研究了合金的热流变行为并建立了流变本构关系,结合显微组织分析及统计技术研究了合金的组织演变情况。结果表明,流变应力随温度的升高和应变速率的减小而降低。合金热变形激活能为580.81kJ·mol~(-1)。随着形变温度的升高,高位错密度处晶界弓出形核使晶界"锯齿"化并形成项链组织,在1100℃获得完全动态再结晶组织,随温度继续升高及应变速率的降低组织明显长大。  相似文献   

18.
研究等径角挤压(ECAP)对Mg-1Zn-1GD合金组织、织构和动态再结晶行为的影响,结果表明,在350℃等径角挤压后,试样的显微组织由细小的再结晶晶粒组成,基体中有大量均匀分布的等轴晶。8道次获得平均晶粒尺寸为3.6m的均匀超细晶粒结构。不连续动态再结晶(DDRX)和连续动态再结晶(CDRX)导致晶粒细化。利用电子背散射衍射技术对织构进行了分析。结果表明,经过4次ECAP后,形成了较强的基础纹理(多重随机分布~19.76)。随着挤压道次的增加,挤压合金板材基面上的晶粒主要沿挤压方向拉长,取向分布由集中状态向分散状态转变。织构减弱,最大值为15.66。最后表明织构与Mg-1Zn-1GD合金的平面各向异性有关.  相似文献   

19.
GH625合金的动态再结晶行为研究   总被引:1,自引:0,他引:1  
采用Gleeble-3800热模拟试验机研究了GH625合金在变形温度为950~1150℃,应变速率为0.001~5s-1条件下的热变形特性,并用OM和TEM分析了变形条件对微观结构的影响。结果表明:当应变量很小时,该合金没有发生再结晶,直到应变量达到0.1时才开始有再结晶晶粒析出。随着变形温度的升高,再结晶晶粒尺寸增大,位错密度降低;当温度较低时显微结构中可以观察到孪晶。当变形温度一定时,随应变速率的增大,再结晶的形核率增大且晶粒变小,位错密度变大;而当应变速率较低时,再结晶进行得比较充分,晶粒尺寸较大。根据实测的应力-应变曲线,获得了该合金发生动态再结晶的临界应变εc和峰值应变εp与Z参数之间的关系:εc=2.0×10-3.Z0.12385,lnεp=-6.02285+0.12385lnZ。此外,还采用定量金相法计算出了合金的动态再结晶体积分数,并建立了该合金动态再结晶的动力学模型:Xd=1-exp[-0.5634(ε/εp-0.79)1.313]。  相似文献   

20.
基于蠕变方程,针对具有应变软化特征的材料提出了一个新的本构模型,该模型考虑了动态再结晶的软化效应。模型认为,由于变形温度决定了原子的扩散能力和位错移动的驱动力,而应变速率决定位错密度和晶界能的累积速度,因而峰值应力取决于变形温度和应变速率。由于再结晶过程是热激活过程,再结晶体积分数可通过唯象理论模型表示成应变的函数,而由峰值应力和再结晶分数可确定由于动态再结晶软化作用引起的应力的下降,因此可以认为,任意时刻的应力取决于峰值应力和应变。该模型表示了温度、应变速率和应变对应力的影响,适合具有动态再结晶的材料,如结构钢35CrMo、20CrMnTi及镁合金AZ31B,计算表明,新模型的预测值与实验值相一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号