首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 562 毫秒
1.
铁炭微电解/Fenton预处理对叔丁酚甲醛树脂合成废水   总被引:5,自引:1,他引:4  
采用铁炭微电解/Fenton试剂法联合工艺预处理对叔丁酚甲醛树脂合成废水,考察了pH、反应时间及H_2O_2投量等因素的影响.结果表明,当原水COD为12 300~17 600 mg/L时,在控制原水pH值为2.0、反应时间为120 min的条件下,铁炭微电解对COD的去除率>50%;向铁炭微电解出水中再投加2.4 mL/L的H_2O_2(30%)进行Fenton反应,在常温(20~30℃)下反应60min对COD的总去除率>83%,废水的B/C值从最初的0.034提高到0.35左右.对预处理出水(调节pH并稀释)进行后续的生化处理,出水水质能够稳定达到<污水综合排放标准>(GB 8978-1996)的二级排放标准要求.  相似文献   

2.
采用Fe~0/GAC-Fenton串联工艺对煤化工生化出水进行深度处理,并对处理效能进行了分析。结果表明,在进水COD为290~330 mg/L的条件下,Fe~0/GAC微电解的最佳进水p H值为3、HRT为1.5 h、m_(Fe)/m_(GAC)为2(质量比)、气水比为3,此条件下微电解对COD的平均去除率可以达到46%,出水p H值在4.85~5.20之间;微电解出水补加亚铁的Fenton反应最佳进水p H值为5、n(H_2O_2)/n(Fe~(2+))为2(物质的量之比)、H_2O_2(30%)投加量为1.0 m L/L、HRT为1.0 h,此条件下Fenton反应对COD的平均去除率可达到39%。组合工艺对COD的总去除率为66%,出水COD在106 mg/L左右,处理成本为2.95元/m~3。  相似文献   

3.
采用Fenton法对高浓度有机综合废水的二级出水进行深度处理,通过单因素试验和正交试验研究了初始pH值、H_2O_2投加量、Fe~(2+)/H_2O_2值(物质的量之比)及反应时间等对处理效果的影响。结果表明,Fenton法处理二级出水的最佳条件如下:初始pH值为4、H_2O_2投加量为1.188 mol/L、Fe~(2+)/H_2O_2值为0.025、反应时间为60 min,在此条件下出水COD60 mg/L,对COD的去除率可达到87%以上,满足《污水综合排放标准》(GB 8978—1996)的一级标准。  相似文献   

4.
Fenton试剂强化铁炭微电解预处理高浓有机废水   总被引:8,自引:0,他引:8  
研究了Fenton试剂法强化铁炭微电解工艺对高浓度难生化有机废水的预处理效果。结果表明,当原水COD在9000mg/L、铁炭微电解反应时间为100min、pH值为2.2时,铁炭微电解对原水COD的去除率〉45%;铁炭微电解出水再投加240mg/L的H2O2(30%)进行Fenton试剂法处理,常温下反应50min对原水COD的去除率可提高到75%以上。铁炭微电解+Fenton试剂联合工艺的除污效果好、运行稳定、成本低廉,适宜对高浓度难生化有机废水的预处理。  相似文献   

5.
《Planning》2015,(12)
为探索有效预处理高浓度乳化液废水的方法,分别对微电解法、电Fenton法预处理乳化液中段废水进行单因素试验和正交试验研究,分析影响COD降解的各个因素,并对微电解-电Fenton法处理乳化液中段废水进行稳定性测试。结果表明:微电解反应的最佳条件为初始pH为3,Fe与C质量比为1∶1,反应时间为90min;电Fenton反应的最佳条件为pH为2,电流密度为40mA·cm-2,每L废水中H2O2投加量为50mL,反应时间为180min。采用微电解-电Fenton法处理乳化液中段废水,COD去除率最高可达80%以上,BOD5/COD可由0.24提升至0.78,可生化性提高,适合后续进行生化处理。  相似文献   

6.
采用微电解/芬顿/厌氧/好氧生物滤池工艺(ME/Fenton/AF/BAF)处理炼油废水,探讨了各工段的工艺参数及工艺整体运行效果。试验得到最佳工艺参数如下:微电解单元的初始pH值为3,Na2SO4投加量为0.05 mol/L;双氧水的投加量为1.5 m L/L;AF/BAF工段的水力停留时间为(2+2)h。在上述工艺条件下,ME/Fenton/AF/BAF工艺连续运行处理炼油废水时对COD、氨氮、油的平均去除率分别为85.2%、85.0%、90.1%。  相似文献   

7.
利用Fenton试剂深度处理两级生物接触氧化工艺出水,以解决生化处理出水水质不达标的问题.结果表明,两级生物接触氧化工艺可有效去除垃圾渗滤液中的氨氮,对氨氮的总去除率高达99.0%,对总氮的去除率也达到了41.1%,但出水COD值高达415 ms/L,且大部分为难生物降解有机物,需进行深度处理.利用Fenton试剂深度处理生化工艺出水,在H2O2和Fe2+投量均为3 mmol/L、pH值为6的最佳反应条件下,Fenton反应对COD的去除率高达53.2%,出水COD值降到195 mg/L,达到国家二级排放标准.  相似文献   

8.
Fenton/BAF组合工艺处理全棉机织布印染废水研究   总被引:1,自引:1,他引:0  
全棉机织布染色加工需使用大量浆料助剂进行上浆处理以提高织物的光滑度及耐磨性,因而排放的废水中往往含有大量的退浆废水,其COD浓度高、碱度强、可生化性差,经常规的混凝沉淀/厌氧/好氧组合工艺处理后,可生化性难以改善,出水COD、色度值难以达标.采用Fen-ton/曝气生物滤池(BAF)组合工艺对其进行深度处理,中试结果表明,在Fenton工艺的初始pH值=4、H2O2投加量=150 mg/L、Fe2+/H2O2值=1、反应时间为60 min的条件下,COD由原来的400mg/L降低至125 mg/L,去除率达68.75%,色度由200倍降至25倍以下;经Fenton氧化处理后,废水的B/C值由原来的0.08上升至0.34,可生化性得到明显改善.在HRT=2.5 h的条件下,BAF出水COD平均为74.5 mg/L,去除率达40.4%.采用Fenton/BAF组合工艺深度处理该类废水,对COD的去除率可达80%以上,出水色度<25倍,处理效果良好.  相似文献   

9.
试验采用微电解工艺处理模拟对硝基酚(PNP)废水。以铁碳为微电解填料,采用响应面法中Box-Behnken试验设计模型,以铁屑投加量、溶液初始pH值、反应时间等因素为考察指标,研究各因素及其交互作用对PNP废水去除率的影响。结果表明:PNP废水质量浓度为200mg/L、铁屑投加量为50g/L、pH值为2.5、反应时间为120min时,PNP和COD去除率分别达到96.05%和48.69%,与预测值仅相差0.29%和0.18%。可见,响应面法用于优化铁碳微电解工艺处理对硝基酚废水是可行且合适的。  相似文献   

10.
催化微电解—UASB处理羧甲基纤维素生产废水   总被引:1,自引:0,他引:1  
采用催化微电解-UASB组合工艺处理羧甲基纤维素(CMC)生产废水,考察了废水pH、反应时间、温度、停留时间对COD去除率的影响.结果表明,当系统进水COD为20 g/L时,在铁炭微电解反应器进水pH值为3.5、反应时间为75 min及UASB反应器温度为37℃、厌氧停留时间为44 h的条件下,出水COD相似文献   

11.
Fenton试剂氧化法深度处理焦化废水的研究   总被引:11,自引:2,他引:9  
以实际焦化废水经A2O工艺处理后的出水为研究对象,考察了Fenton试剂氧化法深度处理焦化废水的效果和影响因素。结果表明,Fenton试剂氧化法对焦化废水具有良好的深度处理效果,在进水COD为100~340mg/L、色度为480~940倍的条件下,出水COD和色度等指标均可达到《城市污水再生利用工业用水水质》(GB/T19923—2005)的要求。在试验条件下,最佳的反应参数:初始pH值为2.5,反应温度为40~50℃,Fe2+投加量为0.4mmol/L,反应时间为2~3h,H2O2投加量为4~8mmol/L。  相似文献   

12.
Sheu SH  Weng HS 《Water research》2001,35(8):2017-2021
Spent caustic from olefin plants contains much H2S and some mercaptans, phenols and oil. A new treatment process of spent caustic by neutralization followed by oxidation with Fenton's reagent (Fe2+/H2O2) was successfully developed. Over 90% of dissolved H2S were converted to gas phase by neutralization at pH = 5 and T = 70 degrees, and the vent gas stream could be introduced to sulfur recovery plant. The neutralized liquid was oxidized with OH. free radical, which was provided by a Fenton's reagent. The residual sulfides in the neutralized spent caustic were oxidized to less than 0.1 mg/L. The total COD removal of spent caustic is over 99.5% and the final COD value of the effluent can be lower than 100 mg/L under the following oxidation conditions: reaction time = 50 min, T = 90 degrees, Fe2+ = 100 mg/L, and a stoichiometric H2O2/COD = 1.1. The value is better than the 800 mg/L value obtained by common WAO process. The optimum pH of the Fenton reaction is around 2 for this process, and the oxidation step can maintain a pH value in the range of 1.8-2.4. Moreover, the iron catalyst can be recycled without affecting process effectiveness thus preventing secondary pollution.  相似文献   

13.
厌氧/好氧/物化组合工艺处理DSD酸废水   总被引:1,自引:0,他引:1  
采用微电解/上流式厌氧污泥反应床(UASB)/高效曝气生物滤池(GBAF)/微电解—Fenton氧化组合工艺处理DSD酸废水,进水COD和色度分别为4980mg/L和50000倍,经过近11个月的调试启动后,出水相应指标分别为69mg/L和30倍,可稳定达到《污水综合排放标准》(GB8978—1996)的一级标准。废水处理直接运行费用为14.452元/m3。  相似文献   

14.
铁炭Fenton/SBR法处理硝基苯制药废水   总被引:18,自引:1,他引:18  
为探寻硝基苯废水的适宜处理工艺,开展了铁炭Fentort/SBR工艺处理硝基苯制药废水的试验研究。结果表明,铁炭内电解结合Fenton氧化的预处理工艺可有效去除废水中的硝基苯类物质,并提高了废水的可生化性。当原水的pH值为2~3、H2O2投加量为500~600mg/L时,调节预处理出水pH值至7~8并经沉淀处理后,对COD和硝基苯类物质的总去除率分别可达47%和92%。后续混合废水经SBR工艺处理后出水水质能满足国家污水排放标准。  相似文献   

15.
采用混凝沉淀-Fenton催化氧化组合工艺对蒽醌染整废水进行处理,研究了混凝剂和Fenton试剂投加量以及各种反应条件对处理效果的影响。试验结果表明,当pH值为6.2、A12(SO4)3投量为300mg/L、PAM投量为3mg/L、沉淀时间为30min时,混凝沉淀出水的COD为233~260mg/L,色度为15~20倍;后续处理采用Fenton试剂催化氧化,当FeSO4投量为200mg/L、H2O2投量为100mg/L、pH值为5.0、反应时间为30min时,出水色度≤10倍,BOD5≤10mg/L,COD≤50mg/L。  相似文献   

16.
Fenton试剂深度处理印染废水的研究   总被引:4,自引:1,他引:3  
结合常州市某印染废水处理厂的现有工艺,采用Fenton法对其二沉池出水进行深度处理.结果表明,Fenton试剂对印染废水的深度处理效果较好,在pH值为6.0、H_2O_2/Fe~(2+)=0.8(物质的量之比)、Fe~(2+)投量为1.0 g/L、反应时间为3 h的最佳工艺条件下,对COD、TN、NH_3-N、TP、色度的去除率分别为84%、27%、46%、75%和83%,出水水质达到了<太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值>(DB 32/1072-2007)的要求.  相似文献   

17.
The Fenton process was used with the objective of improving the biodegradability of the leachate pretreated biologically up to a value compatible with a subsequent biological treatment. The optimum reaction and settlement pH was 3, both for the organic matter removal and for the improvement of the biodegradability. The chemical oxygen demand (COD) removal increased at increasing Fe2+ dosages, from 75.6% for 300 mg/L to 89.0% for 1400 mg/L. The most significant enhancement (84.8%) was obtained with 800 mg Fe2+/L. However, the biological oxygen demand/chemical oxygen demand ratio (BOD/COD) was almost the same at all the Fe2+ dosages, around 0.29. Moreover, varying the H2O2 concentration between 600 and 3600 mg/L, COD removal percentages were between 85.9 and 89.0%. However, the BOD/COD ratio increased at increasing H2O2 dosage up to 3000 mg/L, from 0.12 at 600 mg/L to 0.29 at 3000 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号