首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《等离子体科学和技术》2016,18(11):1123-1129
An experimental setup of laser-induced graphite plasma was built and the spectral characteristics and properties of graphite plasma were studied. From the temporal behavior of graphite plasma, the duration of CN partials(B~2∑~+→X~2∑~+) emission was two times longer than that of atomic carbon, and all intensities reached the maximum during the early stage from0.2 μs to 0.8 μs. The electron temperature decreased from 11807 K to 8755 K, the vibration temperature decreased from 8973 K to 6472 K, and the rotational temperature decreased from7288 K to 4491 K with the delay time, respectively. The effect of the laser energy was also studied, and it was found that the thresholds and spectral characteristics of CN molecular and C atomic spectroscopy presented great differences. At lower laser energies, the electron excited temperature, the electron density, the vibrational temperature and rotational temperature of CN partials increased rapidly. At higher laser energies, the increasing of electron excited temperature and electron density slow down, and the vibrational temperature and rotational temperature even trend to saturation due to plasma shielding and dissociation of CN molecules. The relationship among the three kinds of temperatures was T_(elec)T_(vib)T_(rot) at the same time. The electron density of the graphite plasma was in the order of 10~(17)cm~(-3) and 10~(18)cm~(-3).  相似文献   

2.
By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser having a peak intensity of 4?×?1023W cm~(-2),a high quality electron beam with a maximum density of 117 ncand a kinetic energy density up to8.79?×?1018J m~(-3) is generated.The temperature of the electron beam can be 416 Me V,and the beam divergence is only 7.25°.As the laser peak intensity increases(e.g.,1024 W cm~(-2)),both the beam energy density(3.56?×?1019J m~(-3)) and the temperature(545 Me V) are increased,and the beam collimation is well controlled.The maximum density of the electron beam can even reach 180 nc.Such beams should have potential applications in the areas of antiparticle generation,laboratory astrophysics,etc.  相似文献   

3.
Optical emission spectroscopy (OES) using the trace rare gases of Ar and Xe have been carried out in a radio frequency (RF) driven negative ion source at Institute of Plasma Physics, Chinese Academy of Science (ASIPP), in order to determine the electron temperature and density of the hydrogen plasma. The line-ratio methods based on population models are applied to describe the radiation process of the excited state particles and establish their relations with the plasma parameters. The spectral lines from the argon and xenon excited state atoms with the wavelength of 750.4 and 828.0 nm are used to calculate the electron temperature based on the corona model. The argon ions emission lines with the wavelength of 480 and 488 nm are selected to calculate the electron density based on the collisional radiative model. OES has given the preliminary results of the electron temperature and density by varying the discharge gas pressure and RF power. According to the experimental results, the typical plasma parameters is Te ≈ 2–4 eV and ne ≈ 1×10 17– 8×1017 m−3 in front of plasma grid.  相似文献   

4.
The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B_0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5?×?10~(-3)?-?10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B_0of 6300 G.Ar HWP with electron density~10~(18)–10~(20)m~(-3)and electron temperature~4–7 e V was produced at high B_0 of 5100 G,with an RF power of 1500 W.Maximum Ar~+ion flux of 7.8?×?10~(23)m~(-2)s~(-1)with a bright blue core plasma was obtained at a high B_0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar~+ion-beams of 40.1 eV are formed,which are supersonic(~3.1c_s).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1?×?10~(24)N_2/m~2 h.  相似文献   

5.
Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A¬X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017± 0.2×1017 cm −3 . This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm −3 .  相似文献   

6.
The spectral characteristic of laser-induced plasma in soil was studied in this work, laser-induced breakdown spectroscopy was used to analyze the spectral characteristic of plasma under the condition of different time delays and irradiances. Moreover, the time evolution characteristics of plasma temperature and electron density were discussed. Within the time delay range of 0-5 μs,the spectral intensity of the characteristic lines of Si I: 288.158 nm, Ti I: 336.126 nm, Al I:394.400 nm and Fe I: 438.354 nm of the four main elements in two kinds of national standard soil decayed exponentially with time. The average lifetime of the spectral lines was nearly 1.56 μs. Under the condition of different time delays, the spectral intensity of Pb I: 405.78 nm in soil increased linearly with laser energy. However, the slope between the spectral intensity and laser energy decreased exponentially with the increase in time delay, from 4.91 to 0.99 during 0-5 μs. The plasma temperature was calculated by the Boltzmann plot method and the electron density was obtained by inversion of the full width at half maximum of the spectrum. The plasma temperature decreased from 8900 K to 7800 K and the electron density decreased from 1.5 × 10~(17) cm~(-3) to 7.8 × 10~(16) cm~(-3) in the range of 0-5 μs.  相似文献   

7.
In this paper, a low-pressure capacitively coupled plasma discharge sustained in an argonoxygen mixture was studied in order to evaluate its properties in terms of inactivation of Staphylococcus aureus. The plasma parameters as electron temperature and plasma density were measured by the Langmuir probe (Ne ≈ 1015 m−3, Te ≈ 1.5 eV), while the neutral atom density was in the range of 1021 m−3. In the plasma phase, oxygen radicals were taken as reference of the reactive species with antimicrobial activity, and oxygen spectral lines, over a range of plasma process parameters, were investigated by the optical emission spectroscopy. Optimal plasma conditions were found, and a count reduction of 4 log in a few minutes of the bacterium proves the potentiality of an industrial grade plasma reactor as a sterilization agent.  相似文献   

8.
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N_2 and O_2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(H_β)was used to estimate the electron density nein the jets.For both He/N_2 and He/O_2 jets, newas estimated to be on the order of 10~(15)cm~(-3).The effects of plasma power and gas flow rate were also studied.With increase in N_2 and O_2 flow rates, netended to decrease.Gas temperature in the He/O_2 plasma jets was elevated compared to the temperatures in the pure He and He/N_2 plasma jets.The highest OH densities in the He/N_2 and He/O_2 plasma jets were determined to be 1.0?×10~(16)molecules/cm~3 at x?=?4 mm(from the jet orifice)and 1.8?×?10~(16)molecules/cm~3 at x=3 mm, respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N_2~+ bands in both He/N_2 and He/O_2 plasma jets, as against the absence of the N_2~+ emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N_2~+ in these He plasma jets.  相似文献   

9.
The temperature and density of plasma jets were estimated with a Boltzmann plot and Stark broadening of Ar I (696.54 nm) lines by optical emission spectroscopy (OES) in the process of plasma plastic, and the morphology and microstructure of tungsten (W) powders were investigated by scanning electron microscope (SEM) and x-ray Diffraction (XRD), respectively. The results show that the assumption of local thermodynamic equilibrium (LTE) was invalid at the end of the plasma jets, and earlier than this after the injection of tungsten powder. The temperature and electron density of the plasma jets were up to about T=6797 K with Qc=50 slpm and ne=1.05×1016 cm−3 with Qs=115 slpm at Z=60 mm, respectively, and both dropped rapidly with the injected tungsten powders of 20 μm. After the plasma plastic process, the spherical tungsten powders were prepared and there were some satellite particles on the surface of the spherical products. The tungsten powders were both composed of a single equilibrium α-W phase with a body centered cubic (bbc) crystal structure before and after plasma treatment.  相似文献   

10.
Plasma source is the most important part of the laboratory plasma platform for fundamental plasma experimental research. Barium oxide coated cathode plasma source is well recognized as an effective technique due to its high electron emission current. An indirectly heated oxide coated cathode plasma source has been constructed on a linear magnetized plasma device. The electron emission current density can reach 2 A/cm 2 to 6 A/cm 2 in pulsed mode within pulse length 5–20 ms. A 10 cm diameter, 2 m long plasma column with density 10 18 m −3 to 10 19 m 3 and electron temperature Te ≈ 3–7 eV is produced. The spatial uniformity of the emission ability is less than 4% and the discharge reproducibility is better than 97%. With a wide range of the plasma parameters, this kind of plasma source provides great flexibility for many basic plasma investigations. The detail of construction and initial characterization of oxide coated cathode are described in this paper.  相似文献   

11.
In this study, the density of metastable He2* in an atmospheric-pressure plasma jet operating in helium with 0.001% nitrogen has been measured using an auxiliary measuring electrode technique. In the glow discharge mode, waveforms from two grounding electrodes, including one main discharge electrode and one auxiliary electrode, are captured. The isolated current peak formed by Penning ionization in waveforms from the auxiliary measuring electrode is identified to calculate the density of metastable He2*. In our discharge environment, the helium metastable densities along the jet axis direction are between 2.26× 1013 and 1.74× 1013 cm-3, which is in good agreement with the results measured by other techniques. This measurement technique can be conveniently applied to the diagnosis of metastableHe2* in an atmospheric-pressure plasma jet array.  相似文献   

12.
89SrCl2 is an important radioactive drug for the bone metastasis. It is included in the new pharmacopoeia in 2015 and has a promising future in the market. Depending on the high flux engineering test reactor(HFETR), the process of preparation of high specific activity89SrCl2 solution by nuclear reaction 88Sr(n, γ)89Sr was studied. High purity enriched88SrCO3 was used as target material and irradiated for 56 days under the condition of thermal neutron fluence rate about 2×1014 n•cm-2•s-1. After dissolution and filtration, the colorless89SrCl2 solution was obtained. The specific activity of89SrCl2 solution was 7.77×109-1.08×1010 Bq•g-1, the activity concentration was 3.59×108-1.21×109 Bq•mL-1, the gamma impurity content was 0.11%-0.14%, the Al impurity content was much lower than 2 μg•mL-1(activity concentration 7.4×107 Bq• mL-1).89SrCl2 solution had been tested to meet the requirements of the industry and could be used as raw material for the production of injection. The development of single 7.4×1010 Bq level preparation device of high purity and high specific activity of 89Sr had been finished. This research is important for localization of isotope products.  相似文献   

13.
We have used the Shenguang Ⅱ laser in third harmonic(351 nm) to investigate the emission of L-shell radiation in the 3.3–4.4 ke V range generated using thin foils of Sn coated onto a parylene substrate with irradiation of order 10~(15) W cm~(-2) and nanosecond pulse duration. In our experiment, we have concentrated on assessing the emission on the non-laser irradiated side as this allows an experimental geometry relevant to experiments on photo-ionised plasmas where a secondary target must be placed close to the source, to achieve x-ray fluxes appropriate to astrophysical objects. Overall L-shell conversion efficiencies are estimated to be of order 1%,with little dependence on Sn thickness between 400 and 800 nm.  相似文献   

14.
Proton acceleration experiments were carried out by a 1.2 x 101s W/cm2 ultra-short laser interaction with solid foil targets.The peak proton energy observed from an optimum target thickness of 7μm in our experiments was 2.1 MeV.Peak proton energy and proton yield were investigated for different foil target thicknesses.It was shown that proton energy and conversion efficiency increased as the target became thinner,on one condition that the preplasma generated by the laser prepulse did not have enough shock energy and time to influence or destroy the target rear-surface.The existence of optimum foil thickness is due to the effect of the prepulse and hot electron transportation behavior on the foil target.  相似文献   

15.
Thomson scattering(TS),as a popular and reliable diagnostic technique,has successfully measured electron temperatures and electron number densities of plasmas for many years.However,conventional TS techniques using Nd:YAG lasers operate only at tens of hertz.Here,we present the development of a high-repetition-rate TS instrument based on a high-speed,pulse-burst laser system to greatly increase the temporal resolution of measurements.Successful instrument prototype testing was carried out by collecting TS light from laboratory helium and argon plasmas at 10 kHz.Calibration of the instrument detection sensitivity using nitrogen/oxygen rotational Raman scattering signal is also presented.Quantitative electron number densities and electron temperatures of the plasma were acquired at 10 kHz,for stable plasma discharges as,respectively,~0.9 eV and ~5.37×10~(21)m~(-3) for the argon plasma,and ~1eV and ~6.5×1021 m~(-3) for the helium plasma.  相似文献   

16.
利用15 TW激光脉冲,系统研究了基于电离化注入的激光尾波场加速。实验中,研究了等离子体密度、相互作用位置、激光脉宽以及激光能量对电子束的电荷量、发散角、指向性、能量以及产生概率的影响。将约400 mJ、25 fs的激光脉冲聚焦在喷嘴前沿,等离子体密度约9×1018 cm-3时,电子的产生概率高达100%,获得了水平(竖直)发散角(6.5±0.5) mrad((5.3±0.3) mrad)、水平(竖直)指向稳定性±1.2 mrad (±0.7 mrad)、峰值能量(135±8) MeV和电荷量(13.5±2.0) pC(>50 MeV)的稳定电子束,为其应用奠定了基础。  相似文献   

17.
The degradation of?Escherichia coli?bacteria?by treatment with?cold,?weakly ionised, highly dissociated oxygen plasma,?with?an?electron temperature of 3 e V, a?plasma density of 8?×?10~(15)m~(-3) and a?neutral oxygen atom density of 3.5?×?1021m~(-3) was studied. To determine the ‘real' plasma effects,?two methods were used for evaluation and determination, as well as a comparison of the number of?bacteria that had?survived: the standard plate count technique(PCT) and?advanced fluorescence-activated cell sorting(FACS). Bacteria were deposited onto glass substrates and kept below 50 °C during the experiments with oxygen plasma. The results showed that the?bacteria had?fully degraded after about 2 min of plasma treatment, depending slightly on the amount of bacteria that had been?deposited on the substrates. The very?precise determination of the O flux on?the substrates and the two-method comparison allowed for the determination of the critical dose of oxygen atoms required for the destruction of a bacterial cell wall—about 6?×?10~(24)m~(-2)—as well as deactivation of the substrates—about 8?×?1025m~(-2).These results were taken in order to discuss other results obtained by comparable studies and scientific method?evaluations in the determination of plasma effects on bacteria.  相似文献   

18.
Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser(532 nm wavelength) with an irradiance of 1 x 109 W/cm2 on a steel sample in air at atmospheric pressure.An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions.Using time-resolved spectroscopic measurements of the plasma emissions,the temperature and electron number density of the steel plasma are determined for many times of the detector delay.The validity of the assumption by the spectroscopic methods that the laser-induced plasma(LIP) is optically thin and is also in local thermodynamic equilibrium(LTE) has been evaluated for many delay times.From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value,the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns,900 ns and 1000 ns.  相似文献   

19.
A novel laser-assisted pulsed plasma thruster (LA-PPT) is proposed as an electric propulsion thruster, which separates laser ablation and electromagnetic acceleration. It aims for a higher specific impulse than that achieved with conventional LA-PPTs. Owing to the short-time discharge and the novel configuration, the physical mechanism of the discharge is unclear. Time and spatial-resolved optical emission spectroscopy was applied to investigate the variation in the plasma properties in the thruster discharge channel. The plasma species, electron temperature, and electron density were obtained and discussed. Our investigation revealed that there were Hα, Hβ, Hγ, Hε atoms, C I, C II, C III, C IV, Cl I, Cl II particles, and a small amount of CH, C3, C2, H2 neutral molecular groups in the plasma. The electron temperature of the discharge channel of the thruster was within 0.6–4.9 eV, and the electron density was within (1.1–3.0) $\times $ 1018 cm−3, which shows that the optical emission spectroscopy method is to measure the electron excitation temperature and electron density in heavy particles. But the Langmuir probe method is to measure the temperature and density of free electrons. The use of laser instead of spark plug as the ignition mode significantly changed the plasma distribution in the discharge channel. Unlike the conventional PPT, which has high electron density near the thruster surface, LA-PPT showed relatively large electron density at the thruster outlet, which increased the thruster specific impulse. In addition, the change in the ignition mode enabled the electron density in the LA-PPT discharge channel to be higher than that in the conventional PPT. This proves that the ignition mode with laser replacing the spark plug effectively optimised the PPT performance.  相似文献   

20.
Gallium Arsenide pixel detectors with an area of 170×320 μm2 and thickness of 5 μm, realized by molecular beam epitaxy, have been designed and tested with X- and γ rays. No significant charge trapping effects have been observed, and a charge collection efficiency of 100% has been measured. At room temperature an energy resolution of 671 eV full width at half maximum (FWHM) at 59.54 keV has been obtained, with an electronic noise of 532 eV FWHM. With the detector cooled to 243 K, the electronic noise is reduced to 373 eV FWHM, and the Kα and Kβ lines of the 55Fe spectrum can be resolved. The Fano factor for GaAs has been measured at room temperature with 59.5 keV photons yielding F=0.12±0.01  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号