首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in functional properties of rice bran proteins as influenced by high-pressure (HP) treatment (100–500 MPa, 10 min) were studied. Properties evaluated were protein solubility, water absorption capacity, oil absorption capacity, foaming capacity, foam stability, emulsifying activity, emulsion stability, least gelation concentration, and surface hydrophobicity. HP treatment at 100 and 200 MPa significantly improved the solubility and oil absorption capacity, while water absorption and foaming capacities increased further reaching the maximum at 500 MPa. Compared with the untreated control sample, the emulsifying activity and foam stability of treated samples were significantly higher and least gelation concentration was lower, but none of them showed any specific trend with pressure level. Emulsion stability and surface hydrophobicity increased with the pressure level until 400 MPa and decreased slightly at 500 MPa. Pearson correlation coefficients clearly showed that surface hydrophobicity was positively correlated with water absorption capacity, foaming capacity, emulsifying activity index, and emulsion stability index, but negatively correlated with least gelation concentration. The pressure treated rice bran protein possessed good functional properties for use as a food ingredient in the formulations.  相似文献   

2.
The functional properties including solubility, water absorption capacity, oil absorption capacity, foaming properties and emulsifying properties of 8S globulin fractions from 15 mung bean cultivars were investigated in this study. In addition, the effects of pH on solubility, foaming properties and emulsifying properties were studied. The functional properties of the 8S globulin fractions varied significantly among the different mung bean varieties and exhibited better performance in solubility and emulsion stability compared with soya bean 7S protein. A negative correlation was found between water absorption capacity and oil absorption capacity. Remarkable differences in polypeptides constituents were observed in 8S globulin fractions, and the ratio of 11S/8S globulins has a positive effect on water absorption capacity while a negative effect on oil absorption capacity. As a function of pH, the emulsifying activity indexes of the 8S globulin fractions were found to be distinctly dependent on the solubility, while no significant correlation was found between the emulsifying stability and solubility, nor between the foaming properties and solubility. The foaming capacity showed a strong correlation with foam stability.  相似文献   

3.
袁晓晴  胡燕 《食品科技》2012,(7):136-139,144
为了改善鳙鱼鱼肉蛋白(BCMP)的功能性质以扩大其在食品工业中的应用,以鳙鱼为原料制备了鳙鱼鱼肉蛋白,并利用碱性蛋白酶Alcalase2.4L对其进行水解,得到了3种不同水解度(DH4.5%、DH9.0%、DH13.5%)的酶解物。研究了BCMP及其酶解物的功能性质,包括溶解性、持水性、持油性、乳化性、起泡性。结果表明,与原鳙鱼鱼肉蛋白相比,酶解物的功能性质除持油性以外均有不同程度的提高。此外,DH4.5%的酶解物乳化性和起泡性最高,过度水解(DH9.0%、DH13.5%)反而造成乳化性和起泡性下降。  相似文献   

4.
Neto VQ  Narain N  Silva JB  Bora PS 《Die Nahrung》2001,45(4):258-262
The functional properties viz. solubility, water and oil absorption, emulsifying and foaming capacities of the protein isolates prepared from raw and heat processed cashew nut kernels were evaluated. Protein solubility vs. pH profile showed the isoelectric point at pH 5 for both isolates. The isolate prepared from raw cashew nuts showed superior solubility at and above isoelectric point pH. The water and oil absorption capacities of the proteins were slightly improved by heat treatment of cashew nut kernels. The emulsifying capacity of the isolates showed solubility dependent behavior and was better for raw cashew nut protein isolate at pH 5 and above. However, heat treated cashew nut protein isolate presented better foaming capacity at pH 7 and 8 but both isolates showed extremely low foam stability as compared to that of egg albumin.  相似文献   

5.
以蓝圆鲹(Decapterus maruadsi)分离蛋白为原料,采用碱性蛋白酶对其进行限制性酶解,研究水解度(degree of hydrolysis,DH)对分离蛋白酶解产物溶解性、持油力、乳化性与起泡性等功能特性的影响。结果表明,碱性蛋白酶酶解产物的相对分子质量显著下降。酶解可有效提高分离蛋白的溶解性,其溶解度随DH增加而增加。与对照组相比,分离蛋白经酶解后,产物乳化性与起泡性均显著提高,并呈现先升高后降低的趋势。不同DH酶解产物在pH值为4.0时的乳化性和起泡性最低;当pH值为10.0时,DH5(DH=5%)的乳化性最高((100.9±0.7)m2/g);当pH值为7.0时,DH5起泡性最高((227.3±3.8)%)。除DH20外,其他组的持油力均有显著提高,其中DH5的持油力最高,达3.50 g/g(油/蛋白)。结果表明,一定程度的水解可以显著提高蓝圆鲹分离蛋白的功能特性。本研究为鱼蛋白在食品蛋白配料中的应用提供了一定理论参考。  相似文献   

6.
不同分子量海鲈鱼胶原蛋白肽组分的功能特性比较   总被引:3,自引:2,他引:1       下载免费PDF全文
本文采用不同截留分子量的超滤膜对海鲈鱼胶原蛋白肽溶液进行分级分离,采用碱性蛋白酶水解海鲈鱼加工副产物中提取的胶原蛋白制得的胶原蛋白肽溶液分成三个不同分子量组分SBCP1(Mw2000 u)、SBCP2(2000 uMw3000 u)和SBCP3(Mw3000 u),比较了海鲈鱼胶原蛋白肽它们的吸水性、持水性、溶解性、吸油性、乳化性和乳化稳定性、起泡性和起泡稳定性等功能特性。结果显示:小分子量的SBCP1组分的吸水性和溶解性最好;大分子量SBCP3组分的持水性、乳化性和乳化稳定性以及起泡性和泡沫稳定性最好;中等分子量的SBCP2组分的吸油性最好,这个结果提示了海鲈鱼胶原蛋白肽不同分子量组分的理化特性存在显著差异,其功能特性和分子量分布有密切关系。本研究为海鲈鱼胶原蛋白肽产品的开发利用提供了指导。  相似文献   

7.
《Food chemistry》1998,63(1):71-78
The effect of enzymatic treatment on the nutritional value and functional properties of pea flour was investigated. Pea flour was hydrolyzed with acid protease from Aspergillus saitoi, to give two different hydrolyzed pea flours. This enzymatic treatment led to a significant (p < 0.05) decrease in crude and true protein and to an increase of free amino acids and non-protein nitrogen. The nutritional value decreased, but an increase in the avilability of protein was expected as result of lower trypsin inhibitor activity and phytic acid content in hydrolyzed pea flours. The amino acid profile of unhydrolyzed pea flour was slightly modified after enzymatic hydrolysis, increasing (significantly) the isoleucine, leucine, lysine, cystine, phenylalanine, threonine, alanine, arginine and aspartic acid contents as a result of the added enzyme. In addition, enzymatic treatment released hydrophobic amino acids, which significantly improved the protein solubility at acid pH, the oil absorption capacity and the emulsification capacity of pea flours. Protein solubility, foaming capacity, foam stability, water absorption capacity, gelation capacity and green colour decreased. It was thus confirmed that treatment with acid protease improves some functional properties of pea flour, but the effect on nutritional properties was unclear.  相似文献   

8.
A casein–gelatin composite was prepared by cross‐linking of caseinate and bovine gelatin with a microbial transglutaminase, and the impact of limited proteolysis by trypsin on some functional properties of the composite was investigated in the present work. Two hydrolysed composites were prepared with degree of hydrolysis (DH) of 1 and 2% and analysed by SDS‐PAGE to reflect polypeptide profiles. Some functional properties of the two hydrolysed composites were evaluated, among which solubility, digestibility in vitro, surface hydrophobicity and emulsifying properties showed dependence on the DH. Limited proteolysis of the composite improved its solubility in pH 3–10, especially when the DH was 2%. Compared to the composite, the hydrolysed composites showed an increased emulsifying activity index (about 357–408%), emulsion stability index (about 23–28%) and digestibility in vitro (about 65–80% for pepsin, whereas 2–3% for pepsin–trypsin hydrolysis), together with a decreased surface hydrophobicity (about 55–62%) and oil absorption capacity (about 20–23%). The applied proteolysis also led to the aqueous dispersions of the two hydrolysed composites much lower apparent viscosity, storage and loss modulus.  相似文献   

9.
Heat-denatured whey protein isolate was hydrolyzed with trypsin, α-chymotrypsin, Alcalase or Neutrase to 2.8, 4.3, 6.0 or 8.0% degree of hydrolysis. Hydrolysates were fractionated by ultrafiltration and freeze-dried. Protein content of retentates showed little variation but permeates differed with enzyme. Surface hydrophobicity increased with hydrolysis but was not linear except for α-chymotrypsin. Ultrafiltration increased solubility and the permeates and retentates had better solubility than hydrolysates. Retentates had higher emulsifying activity index than hydrolysates while permeates did not form stable emulsions. Permeates formed stable foams but hydrolysates and retentates showed poor foaming characteristics. Specificity of the enzyme, and degree of hydrolysis influenced the functional properties of the peptides. Fractions generated by trypsin, at all levels of hydrolysis generally had higher solubility, emulsifying properties and foaming properties. Permeates from Alcalase hydrolysis had the best foam capacity but low foam stability.  相似文献   

10.
Effects of limited enzymatic hydrolysis induced by trypsin on the physicochemical and functional properties of hemp (Cannabis sativa L.) protein isolate (HPI) were investigated. The enzymatic hydrolysis was confirmed by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography (SEC). SEC and differential scanning calorimetry (DSC) analyses confirmed the presence of aggregates in the corresponding hydrolysates (with the degree of hydrolysis of 2.3–6.7%). Functional properties, including protein solubility (PS), thermal properties, emulsifying and foaming properties, and water holding and fat adsorption capacities (WHC and FAC) were evaluated. The PS was remarkably improved by the limited enzymatic hydrolysis at all tested pH values. However, the enzymatic hydrolysis led to the marked decreases in emulsifying activity index, foaming capacity and foam stability, WHC and FAC. These decreases were to a great extent related to the presence of aggregates in the hydrolysates.  相似文献   

11.
ABSTRACT: The biochemical and functional properties of 2 hard-to-cook common bean cultivars (Phaseolus vulgaris, L.) were investigated after the extrusion process. Beans of BRS pontal and BRS grafite cultivars were milled and extruded at 150 °C, with a compression ratio screw of 3 : 1, 5-mm die, and screw speed of 150 rpm. Extrudate flours were evaluated for water solubility (WS), water absorption index (WAI), oil absorption capacity (OAC), foaming capacity (FC), emulsifying activity (EA), antinutritional factors, and in vitro protein and starch digestibility. Results indicated that the extrusion significantly decreased antinutrients such as phytic acid, lectin, α-amylase, and trypsin inhibitors, reduced the emulsifying capacity and eliminated the FC in both BRS pontal and BRS grafite cultivars. In addition, the WS, WAI, and in vitro protein and starch digestibility were improved by the extrusion process. These results indicate that it is possible to produce new extruded products with good functional and biochemical properties from these common bean cultivars.  相似文献   

12.
本文系统研究了提高固形物浓度对酸性蛋白酶酶法改性大豆分离蛋白分子量分布、氮溶解指数、分散稳定性、持水力、乳化性、起泡性和泡沫稳定性的影响。结果表明:大豆分离蛋白经过酸性蛋白酶控制酶解制备的改性大豆分离蛋白,其产物氮溶解指数、起泡性均有明显提高,分散稳定性略有提高;但持水力、乳化性、泡沫稳定性有所降低。在相同水解度下,随着酶解体系中固形物浓度的提高,改性大豆分离蛋白的分散稳定性、持水力、乳化活性均呈上升趋势,酶解产物中分子量小于10 kDa的肽段以及氮溶解指数呈下降趋势。当水解度小于8%时,低浓度酶解产物起泡性高于高浓度酶解产物,而水解度超过8%时,高浓度酶解产物起泡性大体高于低浓度酶解产物。  相似文献   

13.
张然  严文慧  齐斌 《食品科学》2011,32(1):23-26
研究不同水解度下的核桃蛋白酶解产物的溶解性、乳化性、起泡性、表面疏水性及氮回收率的变化。结果表明:核桃酶解产物溶解度明显增高,均达85% 以上;水解度为9.29% 时乳化性和起泡能力最强;表面疏水性随着水解度的增大而降低;氮回收率随着水解度的增大而升高,水解度为11.76% 时氮回收率可达88.42%。  相似文献   

14.
This study aimed to investigate the effects of combined germination and Alcalase hydrolysis on the quality of soybean protein. Protein profiles, water solubility, foaming and emulsifying properties, thixotropic properties, and in vitro protein digestibility (IVPD) were tested, the chemical score (CS), essential amino acid index (EAAI), and protein efficiency ratio (PER) of soybean protein were also defined. The combined treatment of germination and Alcalase hydrolysis remarkably improved the solubility, emulsification activity index, emulsion stability index, and foaming capacity of soybean protein. Notably, a decrease in foaming stability was detected. The electrophoretic profile showed a weak breakdown of soybean protein during germination. However, a strong breakdown of protein was observed after the hydrolysis with Alcalase. The combined treatment also decreased the CS and EAAI of soybean protein, but only by 18%. Meanwhile, the IVPD and PER of soybean protein were significantly improved. Moreover, the protein of the germinated and hydrolyzed soybean flour demonstrated better swallowing properties. These findings indicated that the combined treatment of germination and enzymatic hydrolysis can improve the quality of soybean protein.  相似文献   

15.
The functionality of two high-mucilage protein concentrates (HMPC) prepared from linseed and linseed expeller cake by extracting and coprecipitating the mucilage with protein was compared with those of a low-mucilage flour (LMF), a protein concentrate (LMPC), and a protein isolate (LMPI) in simple systems. The HMPC samples had better water absorption and emulsifying properties, higher foaming capacity, but lower nitrogen solubility, oil absorption, and foam stability than LMF and LMPC. They also registered higher values of viscosity and emulsification characteristics than LMPI.  相似文献   

16.
易翠平  周素梅  潘艳艳 《食品科学》2010,31(10):129-132
采用胃蛋白酶对大米蛋白进行水解以改善其功能性质。结果表明,酶添加量7U/g(以蛋白质干基计)、pH1.5、时间5h、温度30℃时,胃蛋白酶对大米蛋白溶解性有较好的改善作用。水解后大米蛋白的乳化稳定性与乳化性分别为33.28min、0.456,高于大豆蛋白和鸡蛋清蛋白;起泡性和起泡稳定性比未经过任何处理的大米蛋白分别提高了25.0%、82.4%;持水性和持油性为2.80、3.30g/g,是未经处理的大米蛋白的2.09、2.92 倍。  相似文献   

17.
采用稀盐溶液浸提及等电点盐析相结合的方法提取制备苦杏仁蛋白,研究pH值、NaCl浓度、蛋白质量浓度和温度等因素对苦杏仁蛋白功能特性(溶解性、持水性、吸油性、乳化性及乳化稳定性、起泡性及起泡稳定性)的影响。结果表明:在等电点pI附近时,苦杏仁蛋白的溶解性、持水性、乳化性及乳化稳定性、起泡性最差;在较低NaCl浓度范围内(0~0.8mol/L)提高NaCl浓度可促进蛋白溶解性、乳化性及乳化稳定性、起泡性及起泡稳定性的提高,而较高的NaCl浓度对蛋白功能特性提高具有抑制作用;当蛋白质量浓度达到一定水平时(3~4g/100mL),蛋白功能特性(乳化性及乳化稳定性、起泡性及起泡稳定性)提高趋于平缓;在适宜的温度范围内,提高温度可有效提高苦杏仁蛋白各项功能特性,但当温度继续上升,各项功能特性持续降低。  相似文献   

18.
以低温脱脂葵花籽粕为原料提取葵花籽蛋白,对其分别进行大孔树脂吸附脱色和限制性酶解结合大孔树脂吸附脱色处理,对比不同处理的葵花籽蛋白白度值、绿原酸含量及功能特性(溶解性、乳化性、乳化稳定性、起泡性、泡沫稳定性、持油性、持水性和凝胶性)的差异。结果表明:限制性酶解10 min结合大孔树脂吸附脱色的葵花籽蛋白白度值(L*)为86.3,绿原酸含量为0.16 mg/g,溶解性为77.60%,起泡性为20.87%,乳化性为3.44 m2/g,乳化稳定性为118.51 min,均显著优于葵花籽蛋白和大孔树脂吸附脱色葵花籽蛋白(P <0.05),持水性为1.94 mL/g,显著优于葵花籽蛋白,但与大孔树脂吸附脱色葵花籽蛋白相当,持油性和泡沫稳定性分别为4.40 mL/g和69.62%,显著低于葵花籽蛋白和大孔树脂吸附脱色葵花籽蛋白,限制性酶解10 min结合大孔树脂吸附脱色葵花籽蛋白展现出较好的凝胶性。研究表明,经限制性酶解结合大孔树脂吸附脱色后,葵花籽蛋白色泽显著改善,其溶解性、乳化性、起泡性、持水性和凝胶性均显著提高。  相似文献   

19.
This study evaluated effects of enzymatic, extrusion and combined pretreatments on functional and thermal properties of protein concentrates from defatted rice bran to improve their applicability to food formulations. After the pretreatments, protein concentrates were recovered by alkaline solubilisation and isoelectric point precipitation. Water absorption capacity, oil absorption capacity, emulsifying and foaming properties, and thermal stability were determined in protein concentrates. Yields of each pretreatment were above 62% protein. Enzymatic hydrolysis increased all functional properties studied, mainly for emulsifying activity index (an increase of 71.1%) and foaming capacity (an increase of 60.3%). The extrusion affected positively the oil absorption capacity, emulsifying activity index and foaming capacity. The combined process was able to raise the functional properties. The principal component analysis confirmed that 95.5% improvement in functional properties of concentrates had a strong positive correlation with the pretreatments. However, the pretreatments affected thermal stability and the enthalpy of denaturation negatively.  相似文献   

20.
The aim of this study was to investigate the effects of partial enzymatic hydrolysis on functional properties of two different pea protein isolates obtained from two pea genotypes, Maja and L1. Papain and commercial protease (Streptomyces griseus protease) were used for protein modification. Solubility, emulsifying and foaming properties were estimated at four different pH values (3.0, 5.0, 7.0 and 8.0). Papain increased solubility of L1 pea protein isolate at pH 3.0, 5.0 and 8.0, emulsifying properties and foaming capacity at all pH values. Otherwise, papain increased solubility of Maja pea protein isolate only at pH 8.0. This pea protein isolate modified with both enzymes formed emulsions with improved stability at lower pH (3.0, 5.0). The commercial protease‐prepared pea protein isolates showed generally low solubility and different emulsifying and foaming properties. Proper selection of enzyme, conditions of hydrolysis and genotypes could result in production of pea protein isolates with desirable functional properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号