首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在固定床反应器上进行了CO2气氛中内蒙古褐煤的热解/气化试验,对含氮气体和CO析出特性进行了连续在线测量,考察了温度、粒径和气氛等因素的影响.结果表明,气氛对于气化反应特性和含氮气体的析出特性有较大影响且在高温区更为明显;煤样与CO2的气化反应在550,℃之后显著加快.CO2气氛下煤中氮主要以NH3、HCN和N2O形式析出,而N2气氛下主要是以NH3、HCN和NO形式析出;不同粒径的煤粉热解时HCN和NH3析出曲线相似且差距不大,N2O析出量随粒径增大稍有增加.  相似文献   

2.
目前对有机工业污泥在不同热转化过程中的反应特性和产物性质缺少系统对比研究.利用热重和红外光谱联用方法(TG-FTIR)对高挥发分造纸污泥在不同热转化过程中的反应特性进行了研究.氮气、空气和CO_2气氛分别对应热解、燃烧和气化反应.3种热转化过程在400℃前的热失重和反应特性相似,主要为水分和挥发分析出的热分解反应.500℃以上高温段反应主要为热分解反应生成焦炭的进一步反应,但3种热转化过程的反应特性差异明显.气化和燃烧反应都有较大失重峰,焦炭与CO_2气化反应发生在700℃以上,焦炭的燃烧反应在450~750℃之间完成,而此阶段热解反应速度则较慢、失重率较小.热转化过程中反应产物的红外谱图表明,污泥热转化产物中包含C—O、C—C、C=O、O—H、C—H、N—H等多种吸收峰,其中热解产物官能团尤其多且复杂.气化反应生成CH_4、CO_2、CO、NH_3等主要气相产物,固体残余率也较低,适用于高挥发分有机污泥的处理.  相似文献   

3.
在热重分析仪(TGA)上进行了O(2)/CO(2)及O(2) /Ar气氛下煤焦的燃烧实验,同时利用傅立叶变换红外光谱仪(FTIR)对燃烧产物进行实时检测.结果表明,在焦炭颗粒的燃烧过程中焦炭氮会转化为HCN、HNCO、N(2)0等.与O(2)/Ar气氛下的燃烧相比,0(2) /CO(2)气氛煤焦燃烧焦炭氮的转化时间延长...  相似文献   

4.
采用热重分析仪与傅里叶红外光谱仪对城市污水污泥进行实验,考察了反应过程及逸出气体产物,求解了热解表观动力学参数。研究表明,污泥样品在N2、CO2和N2+O2气氛中分别发生的热解、气化和燃烧反应,反应过程的特征参数不同;在N2中主要热解温度范围为200~560℃,反应过程在600℃基本完成;随着升温速率增加,热解最大失重速率提高;污泥样品在N2中的热解过程依次析出H2O、CO2、CH4和CO等气体;污泥样品热解不同反应阶段具有不同反应机理和动力学参数,表观活化能在60~100 kJ/mol范围内。  相似文献   

5.
谷壳热解/气化的热重-红外联用分析   总被引:2,自引:0,他引:2  
利用热重分析(TGA)和傅里叶红外光谱(FTIR)联用技术对典型生物质热解和气化特性及其气体产物的释放规律进行了研究,并确定了其热解和气化机理.研究表明,谷壳在N2和GO2气氛下的热解失重主要集中在220~600℃,并且具有相似的热解特性;在800℃以后谷壳在N2和CO2气氛下反应所对应的热重曲线出现了较大的差异.气体产物主要在240~600℃析出,主要成分为H2O、CO、CH4、CxHy(x>1)和一些有机碳水化合物,其中H2O的析出温度较低,而CH4和CO析出温度相对较高;由于谷壳气化过程中存在CH4和CO2重整反应,使得H2O析出呈现双峰形式,并且CH4,含量相对于热解时偏小,CH4的析出特性曲线仅有一个峰,CO的析出特性曲线是双峰形式,且CO的释放曲线和谷壳反应速率曲线有着相似的特征温度和变化趋势.谷壳的热解服从两步反应机理,低温段的热解机理函数为f(α)=(1-α)2/3,高温段的热解机理函数为f(α)=(1-α)2.5;而气化机理函数为f(α)=(1α)2/3.  相似文献   

6.
在固定床反应器中,以水蒸气为气化介质,探讨不同Ca O添加量和压力对松木屑气化结果的影响。结果表明Ca O具有CO2吸附和催化焦油裂解双重作用。在800℃、0.5 MPa下,添加一定量Ca O,CO2浓度降幅达到50%以上,H2浓度增加到59.35%,气体热值达到12.97 MJ/m3;在900℃,Ca/C(Ca O所含Ca与松木屑所含碳的物质的量之比)为1.0时焦油有最小值,为2.43 g/m3。此外,增加反应压力,H2和CO2的浓度出现缓慢增加趋势,CO浓度减少,CH4浓度无明显变化,同时气体中焦油含量出现降低趋势,该实验中最低值可达1.99 g/m3。  相似文献   

7.
CaSO4在不同气氛下分解特性的实验研究   总被引:16,自引:0,他引:16  
通过热重非等温实验研究了不同气氛下CaSO4的分解反应特性,利用红外光谱仪分析反应析出的气体成分。在实验所用的不同非还原气氛中,CaSO4在O2/CO2气氛下的热稳定性最好,其次是O2/N2气氛、CO2气氛、N2气氛。此外,还发现氧气的存在提高了CaSO4热稳定性,抑止了CaSO4的分解。CO气氛下CaSO4的分解反应为平行竞争反应,反应同时生成CaO和CaS。在0.5%CO浓度下,CaSO4分解最终产物主要以CaO为主,CaS的质量百分比仅为28.85%。在4%CO气氛下,反应初期分解产物主要为CaO。后期分解产物主要为CaS,最终反应产物中CaS的质量百分比为57.04%。图6表1参5  相似文献   

8.
龙潭  陈登宇  朱锡锋 《太阳能学报》2015,36(5):1067-1072
采用小型实验装置和计算机数值模拟研究当量比和反应温度对生物油气化产物的产率、组成及碳转化率的影响,获得在O2和N2两种氛围下气化反应器内速度场和温度场的分布情况。结果表明:在相同气化温度下,CO2产率随O2当量比的增大而增加,最高可达447.72 m L/g;可燃气体产率随当量比的增大而减少并趋于稳定;碳转化率随当量比的增大先减少后增加,最高可达93.92%;生物油气化气体的产率随气化温度的升高而增加,且模拟值与实验值吻合较好,其中CO2含量及产率的实验值与模拟值的平均相对误差达到最小值,分别为24.74%和33.72%。  相似文献   

9.
以杉木屑为原料,CO2为气化剂,熔融碳酸盐Li2CO3-Na2CO3-K2CO3(LNK)为热介质和催化剂进行气化制合成气(H2+CO)的研究,考察气化剂CO2流量、CO2通入方式、复合熔盐体系中添加的金属氧化物种类和Cr2O3含量等因素对气体产物组成分布及产率的影响。结果表明:CO2流量显著影响气化反应的平衡;以鼓泡法通入CO2时生物质的气化效果优于吹扫法的情况,CO2流量为99.8 L/h时气化效果较好,合成气含量和产率分别达到61.4%和350.2 mL/g生物质;添加的金属氧化物中Cr2O3对生物质气化过程的促进作用优于MgO和Fe2O3,随着Cr2O3含量的增大,合成气含量先增大后略微减小,在Cr2O3含量为10.0%时最高,为67.9%。  相似文献   

10.
利用法国Setaram公司生产的TGA92型热重分析仪,比较钾基、钙基、铁基催化剂对煤焦-CO2气化反应的影响,发现钾基催化剂催化效果最好.在反应温度900~1050℃范围内,利用自行建造的小型固定床试验装置研究了气化温度、钾盐催化剂含量、形成焦炭的原煤煤质对煤焦与CO2的气化反应活性的影响.试验结果表明,反应温度对气化过程影响显著,提高气化温度,煤焦与CO2的气化反应速率急剧增加,转化率显著提高;不同配煤比的原煤制得的焦炭,在气化过程中表现出不同的反应特性,弱黏结性的气煤表现出良好的抗碱能力.  相似文献   

11.
钾盐对煤焦-CO2气化反应特性的影响   总被引:1,自引:0,他引:1  
利用法国Setaram公司生产的TGA92型热重分析仪,比较钾基、钙基、铁基催化剂对煤焦-CO2气化反应的影响,发现钾基催化剂催化效果最好.在反应温度900—1050℃范围内,利用自行建造的小型固定床试验装置研究了气化温度、钾盐催化剂含量、形成焦炭的原煤煤质对煤焦与CO2的气化反应活性的影响.试验结果表明,反应温度对气化过程影响显著,提高气化温度,煤焦与CO2的气化反应速率急剧增加,转化率显著提高;不同配煤比的原煤制得的焦炭,在气化过程中表现出不同的反应特性,弱黏结性的气煤表现出良好的抗碱能力。  相似文献   

12.
木屑/CaO与水蒸汽连续气化制氢的实验研究   总被引:2,自引:0,他引:2  
搭建了可实现在定压条件下连续给料的实验台.实验结果表明,温度为923K,当压力大于1MPa时连续气化反应能够持续地进行;923K,2.0MPa时系统运行平稳后生成气体成分中H2和CH4的含量可达到92%,其中H2为79%.再增大压力,氢含量比率有所下降,但碳转化率略有增加,即产气量略有增加.压力低于1MPa时,CO2的吸收并不理想,产物中CO2含量较高,当压力达到2.0MPa后,CO2吸收已较充分,再增加压力,CaO、Ca(OH)2吸收CO2形成CaCO3反应受压力影响较小.  相似文献   

13.
超临界水葡萄糖制氢中的多元气液相平衡   总被引:1,自引:0,他引:1       下载免费PDF全文
1引言生物质在超临界水中气化产生氢气成为一种具有发展前景的新能源技术。在超过水的临界点条件下,水的氧化性变强,生物质迅速水解并产生大量的气体产物:CO2、H2、CH4、CO和H2O等[1]。目前许多国家相继展开相关研究,研究葡萄糖或者纤维素在不同反应条件下的气体产物情况[2],确  相似文献   

14.
在自制的生物质真空氧载体气化反应装置上,考察无氧载体时反应温度对气体产物分布及合成气中H_2和CO总含量的影响情况,研究氧载体对小麦秸秆真空气化过程的影响规律,并借助扫描电镜(SEM)对反应前后的氧载体进行表征。实验结果表明:无氧载体时,随着反应温度的升高,合成气中H_2和CO含量均逐渐增大,750℃时H_2含量达到10.13%;当反应温度从550℃升高到800℃时,反应温度对CO_2含量影响最为显著,CO_2含量从27.31%减小到14.43%。有氧载体时,在上述反应温度范围内,H_2含量从6.43%升至13.62%,合成气中H_2/CO值、H_2和CO总含量均随反应温度的升高而增大;氧载体可增大气体产物中H_2与CO产量,同时H_2/CO值也明显增大,说明氧载体可促进生物质气化反应;在真空条件下,氧载体并未发生明显烧结,且反应后的氧载体结构更有利于生物质气化,但其机械强度有所降低。  相似文献   

15.
采用热重分析法对CO2气氛下工业危废污泥与煤和废活性炭在不同比例下混合进行共气化的失重过程、气化反应动力学和协同气化效应进行了研究.随着混合燃料中煤/废活性炭比例的提高,混合燃料的失重率和最大失重速率都相应大幅提高.随气化温度升高,相比污泥单独气化,混合燃料的协同气化反应得以加强.60%污泥混合40%煤/活性炭时表现出更高的协同性指数,焦炭气化阶段的反应活化能为污泥单独气化时的24%~31%.与煤相比,废活性炭与污泥的协同气化效应更为显著.在此基础上利用管式气化实验炉对混合燃料的产气特性进行了初步研究.产气主要有效成分中CO体积占比最大,其次为H2和CH4.污泥单独气化时,产气中CO含量随CO2流量增加逐渐降低;与煤或废活性炭共气化时,CO含量则随CO2流量增大而逐渐增加.随煤和废活性炭混合比提高,H2、CH4含量逐渐上升,CO则相应降低.CO的含量整体受混合比和CO2流量共同影响.  相似文献   

16.
对松木锯屑在N2和CO2气氛下的热解反应进行了分析,分别运用Ozawa法和Coats-Redfern法求得松木锯屑在N2气氛下的反应活化能与适合的机理函数。试验结果表明:在CO2和N2气氛下,松木锯屑热解过程分为干燥、热解预热、热解和高温煅烧4个阶段。随着升温速率的提高,热解曲线向高温一侧移动;较之在N2气氛下的热解过程,松木锯屑在CO2气氛下热解完成后的残余质量更少,由此可推断:CO2气氛有利于热解产生更多的气体产物。  相似文献   

17.
针对以CO为主要可燃成分的低热值燃气,设计加工了平口烧嘴装置。在该装置上进行了CO与CH4预混熄火特性的对比实验;考察了H2O,N2对CO预混火焰熄火特性的影响。结果表明:与CH4相比,CO点火困难,稳定燃烧范围更窄;随着N2添加比的增大,熄火当量比逐渐增大;添加适当比例的H2O能够提高预混火焰的稳定性。采用CHEMKIN软件对在实验气体中添加不同比例H2O的层流火焰速度和敏感性系数进行了模拟计算,对比实验熄火特性曲线和层流火焰速度变化曲线,发现两者变化趋势相近,并且均在H2O的添加比例为3%~15%时出现极值点。  相似文献   

18.
在15~20 kg/h规模的沉降式加压气化实验装置上,实验研究了高温条件下,不同O/C摩尔比对生物质气化特性的影响,并根据实验气化炉的边界条件,建立了相应的气化模型.模型计算结果与实验结果吻合较好,模型能够很好的预测气化参数对生物质气流床气化特性的影响.研究结果袁明:在气化还原反应区,高温有利于气化反应向吸热方向进行;O/C比在1.0~2.0范围内,随O/C比的增加,CO、H2均呈现先增加后减小的趋势,可燃气体成分(CH4 H2 CO)占总合成气的50%左右;部分燃烧反应区温度在1600 K以上时,碳转化率大于90%,冷煤气效率达到50%左右.  相似文献   

19.
与传统煤粉燃烧技术不同,煤粉在高浓度O2/CO2气氛中燃烧,在炭粒表面产生强烈的斯蒂芬流,对炭粒燃烧有重大的影响.笔者考虑炭的表面氧化(2,C+O2→2,CO)、CO2还原反应(C+CO2→2,CO)和H2O气化反应(C+H2O→CO+H2),给出忽略斯蒂芬流的传质系数修正式.数值计算表明,对单膜模型的修正显著改善了颗粒温度、燃烧速率和燃尽时间的预报.在不同燃烧情况下,采用修正表达式对斯蒂芬流的影响进行了讨论.研究发现,修正因子和反应速率、环境组分浓度、反应产物浓度有关;在典型富氧燃烧工况下,O2的传质系数修正幅度可达18%;如果有水蒸气(摩尔分数为0.1)存在,则修正幅度可达22%;CO2的传质系数修正幅度可达74%,有水蒸气(摩尔分数为0.1)存在时则修正幅度可达78%;仅有水蒸气气化反应时,可以忽略对其传质系数的修正.但如果同时存在炭的表面氧化反应和CO2气化反应,则必须对其进行修正,修正幅度为29%.  相似文献   

20.
基于Gibbs自由能最小化原理和Van Krevelen坐标系研究了不同固体燃料在O2气氛下完全气化时的气化特性。结果表明:当固体燃料完全气化时,CO、CO2、H2和H2O摩尔分数变化范围分别为0.4-1.0,0-0.15,0-0.45,0-0.08。当固体燃料H/C比固定时,在低O/C比下,H2和CO含量保持恒定;在高O/C比下,O/C比增加会减少当量氧气比,降低气化温度。气化炉有效能效率随O/C比增加而减小。当固体燃料O/C比固定时,气化温度随H/C比增加而减少,CO含量减少,而H2、CO2和H2O含量增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号