首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用顺磁共振波谱仪(ESR),以4-羟基-2,2,6,6-四甲基哌啶嗣(TEMPOL)作自旋标记,测定了不同组成及不同温度聚醚聚氨酯/聚甲基丙烯酸甲酯(PU/PMMA)互穿网络聚合物(IPN,S)的分子运动与互穿缠结程度的关系。实验结果表明:在该IPN中两网络互穿缠结程度越大,在高场上出现各向同性温度T_n越高。当PU/PMMA=40/60时,得到较大交联密度和较高温度的T_n。由测得的T_(50G)温度看出该体系是两相分离体系,并且不同组成比的IPN两个T_(50G)温度发生内移,在40/60时内移最大,用动态力学方法测得的结果与此一致。  相似文献   

2.
本文通过端异氰酸酯基聚氨酯预聚体与环氧树脂E-51形成了互穿网络,并通过热重分析仪(TGA)研究了完全固化后的互穿网络的热分解行为;透射电镜研究了IPN的相分离行为及用拉伸强度,断裂伸长率对其进行了力学性能的表征.结果表明,经过环氧树脂改性的聚氨酯的耐热性能比纯聚氨酯得到了提高,且力学性能也有所改善.并选取性能较好的PU/EP IPN,用纳米级有机蒙脱土对其进行了改性.研究发现,经有机纳米蒙脱土改性的PU/EP IPN的力学性能及耐热性有了进一步的提高.  相似文献   

3.
两类室温固化的蓖麻油聚氨酯互穿网络材料   总被引:2,自引:0,他引:2  
研究了五种取代乙烯分别与蓖麻油聚氨酯生成的互穿网络聚合物(IPN)的力学性能与其组成的关系,指出聚氨酯含量在65%左右拉伸强度最大,最大强度与取代乙烯均聚物的玻璃化转变温度有关。NCO/OH比愈大,IPN的交联密度愈大,伸长率愈小,拉仲强度愈大。由丙烯酸丁酯生成的IPN具有弹性体性能。还研究了蓖麻油聚氨酯与不饱和聚酯及取代乙烯生成的IPN,指出丙烯腈作为取代乙烯所得的IPN性能最好,不饱和聚酯与丙烯腈的重量比不宜超过1/1。后一IPN的扫描电镜照片表明具有微观相分离的形态结构。  相似文献   

4.
端羟基丁二烯型聚氨酯/聚苯乙烯互穿聚合物网络的研究   总被引:1,自引:0,他引:1  
研究了同步法合成的端羟基聚丁二烯型聚氨酯/聚苯乙烯互穿聚合物网络〔PU(HTPB)/PS_t-IPN〕的形态结构、热转变行为和力学性能。电镜结果表明:该类 IPN 形成既二相分离又各自连续的相结构,当 PU(HTPB)/PS_t 组成比为25/75时,体系发生相转变;组成比为50/50左右时,形成的聚苯乙烯分散相区域尺寸较小。增加每一相的交联程度,均可提高二相的互穿能力,所有 IPN 都呈现出独特的细胞状结构形态,文中根据聚氨酯首先形成的事实,提出了该结构的形成机理。T_(?)研究结果表明:玻璃化转变温度的移动将受到 IPN 自身诸因素的制约。力学性能结果表明:随 IPN 中 PU(HTPB)含量增加,材料的刚性下降,而断裂伸长则出现由增加到下降的过程,在组成比为60/40左右时,达最大值。  相似文献   

5.
聚醚氨酯/环氧树脂(PU/EP)互穿聚合物网络(IPN)的研究   总被引:2,自引:1,他引:1  
用一步本体法合成了聚醚氨酯/环氧树脂(PU/EP)互穿聚合物网络(IPN)。以透射电镜(TEM)、红外光谱(FT-IR)及动态粘弹仪(TOYO Baldwin Rheovibron DDV-Ⅲ-EA)对IPN体系前进行了表征,并以自行设计的悬臀梁法测量了该体系的阻尼性能。结果表明:PU/EPIPN中PU和EP两高分子网络间存在着强物理相互作用——互穿作用而无化学相互作用。互穿作用的大小依赖于PU/EP原料配比、PU交联密度、PU软段长度、PU扩链剂结构及未固化EP的本体粘度等因素;该IPN体系的阻尼温域宽(大于100℃)且阻尼值高(tgδ大于0.4),是性能优越的阻尼材料。由表征结果对该IPN体系的形成过程进行了探讨,提出了互穿——迁移相竞争的概念。  相似文献   

6.
通过动态力学分析测试手段,考察了不同表面性质的无机粒子对聚四亚甲基醚二醇,2,4-甲苯二异氰酸酯,二甲硫基甲苯二胺(PTMG-TDI-E-300)组成体系的聚醚型聚氨酯(PU)微相分离的影响,并与力学性能进行关联。结果表明,在聚氨酯中加入不同的无机粒子,可以提高材料微相分离的程度,材料的耐撕裂性能明显提高。比较PU/SiO2、PU/CNTs和PU/13X分子筛的几种复合材料,以多壁碳纳米管(CNTs)对聚氨酯软硬链段的微相分离影响最大,在以tanδ-T曲线为基准时,与纯PU相比,其玻璃化转变温度下降了17.18℃。  相似文献   

7.
聚丁二烯型聚氨酯与聚醚型或聚酯型聚氨酯比较,力学性能较低,因而推广应用受到一定的限制。加入炭黑和其它填料,虽能在不同程度上改进力学性能,但会引起体系粘度增大和混炼、浇注困难。我们曾报道用同步法合成聚丁二烯型聚氨酯/聚(苯乙烯—二乙烯苯)互穿聚合物网络〔PU(HTPB)/P(St-DVB)-IPN〕,并研究了该 IPN 体系的  相似文献   

8.
为了改善聚醚型聚氨酯弹性体(PU)的力学性能,运用互穿聚合物网络(IPN)技术,分别将端正己烷基、端十二烷基、端十八烷基超支化聚酯(HBP-C6、HBP-C12、HBP-C18)引入至PU中形成共混体系。结果表明,相比于空白胶片,PU/HBP IPN体系的力学性能有了一定的提高,超支化聚酯端烷烃链越长,相畴尺寸逐渐减小,互穿程度更高;高含量的HBP-C18加入后,随着其质量分数的增加,互穿网络胶片的拉伸强度和断裂伸长率均呈现出先增大后减小的趋势,加入30%的HBP-C18时,形成了双相连续的微观结构;采用"准一步法"和"一步法"合成端十八烷基超支化聚酯,分别与聚氨酯形成互穿网络,力学测试结果表明,前者的力学性能优于后者。  相似文献   

9.
以端羟基聚丁二烯/丙烯腈共聚物(HTBN)为软段,甲苯二异腈酸酯(TDI)为硬段的聚氨酯预聚体,以丙烯酸酯单体为自由基聚合单体,利用"同步互穿"工艺,制备了一系列室温固化HTBN型聚氨酯(HTBN-PU)/聚丙烯酸酯(PA)互穿网络(PU/PA-IPN)聚合物.研究表明:二月桂酸二丁基锡(T-12)用量为0.3%、过氧化苯甲酰(BPO)用量为1.0%时,PU/PA两相可形成较为理想的阻尼IPN结构.以甲基丙烯酸丁酯(BMA)为PA相的PU/PA-IPN材料阻尼性能最好,tanδ>0.3的温域高达126℃(-46~80℃),tanδ的峰值为0.85;PU/PA-IPN的频谱图表明,材料表现出较好的低频(10Hz)阻尼性能.  相似文献   

10.
PU/VER IPN材料阻尼性能的研究   总被引:10,自引:0,他引:10  
采用DMA法研究了热力学、动力学因素及组成比对聚氨酯/乙烯基酯树脂互穿聚合物网络(PU/VER IPN)材料阻尼性能的影响。研究发现:引入丙烯酸酯类单体为VER共聚单体,改善了常规以苯乙烯(St)为共聚单体的PU/VER(St)IPN材料的阻尼性能,含较长酯基的体系具有更优的阻尼性能;通过调整两网络的相对聚合速率及组成比,可使材料出现宽温域阻尼,合成的组成比为80/20、70/30及60/40的IPN材料,在至少近80℃的温域,阻尼因子(tanδ)>0.3。进一步通过TEM检测分析了IPN材料微观结构与阻尼性能的关系。  相似文献   

11.
付丽华  贾德民  刘卅 《功能材料》2005,36(10):1638-1644
首次将插层纳米复合技术与互穿聚合物网络(IPN)技术相结合,通过同步插层聚合法制备了聚氨酯/聚甲基丙烯酸甲酯/有机蒙脱土(PU/PMMA/OMMT)纳米复合材料.XRD、SEM、TGA等研究表明,在聚氨酯/有机蒙脱土(PU/OMMT)体系中蒙脱土以40~700 nm的团聚体不均匀地分散在聚氨酯基体中,且部分蒙脱土被插层,其层间距增加了0.95nm,体系为插层型纳米复合材料.PU/PMMA/OMMT体系中蒙脱土以20~80nm的粒子分布于聚合物基体中,且蒙脱土的插层效果显著,是PU/OMMT体系的2.5倍,形成了插层型纳米复合材料.同时,蒙脱土的加入使得聚氨酯和聚甲基丙烯酸甲酯的互穿聚合物网络(PU/PMMA-IPN)体系中PU相与PMMA相间相分离更明显,塑性相畴粒子尺寸显著增加,且各相中两组分相互作用加强,分布更均匀.PU/PMMA/OMMT纳米复合材料的热稳定性高于其他材料.同时对其力学性能进行了研究,发现其力学性能明显优于聚氨酯、基于聚氨酯和PU/PMMA-IPN和PU/OMMT纳米复合材料.  相似文献   

12.
利用互穿聚合物网络技术(IPN),将双丙酮丙烯酰胺(DAAM)用于PU胶粘剂的改性.研究了组分比、引发剂用量、固化参数对PDAAM/PU IPN力学性能的影响.结果表明,PDAAM可以提高PU的力学性能.当DAAM的质量分数在40%时,拉伸强度及断裂伸长率都达到最大值.  相似文献   

13.
用同步法合成一系列氰酸酯/聚甲基丙烯酸甲酯(CE/PMMA)体系的互穿聚合物网络(IPN).研究了甲基丙烯酸甲酯(MMA)的含量对CE/PMMA-IPN体系的力学性能及密度的影响.结果表明:CE/PMMA-IPN体系的性能比单一树脂的优异,但其工艺条件有待进一步改进.  相似文献   

14.
研究了 PU(HTPB)/P(MMA-co-EGDMA)-IPN 的合成、形态和力学性能。结果表明,两网络的相对形成速率对 IPN 的形态和性能有显著的影响。当两网络形成大致同步时,微区尺寸适中,界面互穿良好,IPN 的综合力学性能最佳。两网络交联密度对 IPN 的力学性能也有显著影响,但只有先形成的网络的交联密度变化才会引起形态的明显改变。  相似文献   

15.
氢化丁腈橡胶/聚甲基丙烯酸酯互穿聚合物网络研究   总被引:4,自引:1,他引:3  
采用序列法制备氢化丁腈橡胶(HNBR)/聚甲基丙烯酸酯互穿聚合物网络(IPN)阻尼材料.IPN体系的红外曲线在1750~1700cm~(-1)及1190~1150cm~(-1)范围内出现了较强的特征峰,可以证明聚甲基丙烯酸酯的存在.物理机械性能表明,随着甲基丙烯酸酯的酯基体积增大,IPN的硬度、拉伸强度及100%定伸强度减小.动态性能表明HNBR与聚甲基丙烯酸酯形成的IPN体系能够拓宽HNBR的阻尼温度范围.HNBR/聚甲基丙烯酸正丁酯IPN的阻尼因子较高,适用于约束阻尼系统,而HNBR/聚甲基丙烯酸甲酯IPN具有较高的损耗模量和适宜的阻尼因子,适于自由阻尼系统.  相似文献   

16.
采用同步互穿和梯次化涂层工艺,室温固化制备新型梯次化聚氨酯/乙烯基酯树脂(甲基丙烯酸丁酯)互穿聚合物网络(PU/VER(BMA)IPN).采用DMA考察了涂层时间间隔和组成比对阻尼性能的影响.结果表明当涂层时间间隔为3h,组成比为50/50~60/40~70/30的梯次化IPN材料,tgδ>0.3的温域为-57~90℃,tgδ>0.5的温域为-36~54℃,其有效阻尼温域较单层材料的明显变宽.SEM-EDX对材料梯度结构的检测结果表明制备的梯次化IPN材料宏观组成上存在梯度结构;存在独立的组成和结构均匀的各层结构;层间过渡区域为组成连续变化的梯度结构.TEM检测结果表明材料的梯度区域较每层区域具有更加精细、均匀的双相连续微观结构.并且通过梯次化涂层工艺使材料的力学性能得以改善,涂层综合性能较好.  相似文献   

17.
用同步法合成了聚碳酸亚丙酯聚氨酯/聚甲基丙烯酸甲酯互穿网络聚合物(PPCPU/PMMA IPN),调节IPN中两组分配比制备出多种高聚物合金.用DSC、TEM对IPN的研究结果表明,PPCPU/PMMA IPN的两组分是互不相容的,同时对各种组成比的IPN材料进行力学性能测试,并用SEM对断面进行了观察解释.实验结果发现,IPN的密度大于相应体系体积加和值.  相似文献   

18.
以4,4’-二苯基甲烷二异氰酸酯和聚醚及双酚A型环氧树脂为原料经共聚合成了聚氨酯(PU)/环氧树脂(EP)互穿聚合物网络(IPNs).通过改变聚氨酯结构及环氧树脂含量制备系列PU/EP的IPNs,并对其性能进行了研究.研究表明随着聚氨酯中两官能度聚醚用量增加,IPNs体系的亲水性增强、表面自由能增大;此外随着环氧树脂含量增多,整个IPNs体系的疏水性增强;力学性能测试表明,聚氨酯结构以及环氧树脂含量对PU/EP的IPNs材料力学性能影响较大.  相似文献   

19.
以接枝γ-氨丙基三乙氧基硅烷(KH-550)的聚琥珀酰亚胺(KPSI)和壳聚糖(CTS)为原料在水体系中合成了改性聚天冬氨酸(KPASP)/壳聚糖(CTS)互穿网络聚合物(IPN)吸水性树脂(KPASP/CTS IPN)。探讨了KPASP与CTS的配合比、交联剂用量以及交联温度对KPASP/CTS IPN吸水性能的影响。采用红外光谱(FT-IR)和扫描电镜(SEM)对该吸水性树脂结构形态进行了表征。结果表明,CTS在互穿网络中所占比例、交联剂用量和交联温度对KPASP/CTS IPN的吸液性能具有较大的影响,CTS与聚天冬氨酸(PASP)形成的互穿网络结构能够显著提高PASP的吸水性能及耐盐性。当KPASP与CTS的质量比为1∶1、交联剂甲醛为CTS的3.5%(wt,质量分数)以及交联温度为40℃时所制得的KPASP/CTS IPN在蒸馏水和生理盐水中的吸液倍率分别为325和153g/g,吸液倍率比KPASP分别提高了80.6%和132%。扫描电镜研究的结果表明KPASP/CTS IPN表面的孔状结构密度增加,比表面积增大。  相似文献   

20.
形状记忆功能化生物聚氨酯在医用植入体材料中备受关注,而聚氨酯的形状记忆性能与其微相分离结构密切相关。文中以可降解聚己内酯二醇(PCL-diol)、脂环形异佛尔酮二异氰酸酯(IPDI)、1,4-丁二醇(BDO)为单体通过两步法合成生物聚氨酯(PU),以溶液共混的方式加入PU基体中,制备了一系列聚氨酯/羟基磷灰石(PU/HA)复合材料。通过场发射扫描电子显微镜、傅里叶变换红外光谱、热失重分析和动态力学热分析等不同表征方法研究了HA的引入对PU基体微相分离的影响,及其与宏观形状记忆性能的关系,并考察了材料的生物安全性。结果表明,HA的引入明显促进了PU的微相分离,随着HA含量的增加,硬段与软段的玻璃化转变温度差值越大,表明微相分离程度越高。在HA质量分数低于15%时,HA的含量越高,形状回复越快,表明微相分离程度越高,形状记忆性能越好。L929细胞毒性测试结果显示,PU/HA具有良好的细胞安全性,在医用骨修复领域有潜在的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号