首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure and tensile properties of the as-cast and solution treatment Mg-4.5Zn-1Y-xNd-0.5Zr (x=0, 1 wt.%, 2 wt.%, 3 wt.%) alloys were investigated. The results showed that the microstructure of Mg-4.5Zn-1Y-0.5Zr alloy consisted of α-Mg, Zn-Zr, W (Mg3Y2Zn3) and I (Mg3YZn6) phases. With the addition of Nd, I-phase disappeared and Mg3Y2Zn3 phase changed into Mg3(Nd,Y)2Zn3 phase. When the content of Nd reached 3 wt.%, T phase, i.e., ternary Mg-Zn-Nd phase, formed. In addition, with the increase of Nd content in the alloys, the secondary dendritic arm spacing decreased, while the amount of intermetallic phases increased. For as-cast Mg-4.5Zn-1Y-xNd-0.5Zr alloys, after solution treatment, microsegregation was eliminated and the shape of eutectic structure of α-Mg+W transformed from lamellar into spherical. The tensile strength and elongation of Mg-4.5Zn-1Y- 3Nd-0.5Zr alloy were increased from 219.2 MPa and 11.0% to 247.5 MPa and 20.0%, respectively.  相似文献   

2.
The solidification microstructure and mechanical properties of as-cast Mg-Al-Sn alloys have been investigated using computational thermodynamics and experiments. The as-cast microstructure of Mg-Al-Sn alloys consists of α-Mg, Mg17Al12, and Mg2Sn phases. The amount of Mg17Al12 and Mg2Sn phases formed increases with increasing Al and Sn content and shows good agreement between the experimental results and the Scheil solidification calculations. Generally, the yield strength of as-cast alloys increases with Al and Sn content, whereas the ductility decreases. This study has confirmed an early development of Mg-7Al-2Sn alloy for structural applications and has led to a promising new Mg-7Al-5Sn alloy with significantly improved strength and ductility comparable with commercial AZ91 alloy.  相似文献   

3.
Melt spinning technology was used to prepare the Mg2 Ni-type(Mg24 Ni10 Cu2)100–x Ndx(x=0,5,10,15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of Nd content and spinning rate on the structures and electrochemical hydrogen storage performances of the alloys were investigated.The structure characterizations of X-ray diffraction(XRD),transmission electron microscopy(TEM) and scanning electron microscopy(SEM) linked with energy dispersive spectroscopy(EDS) revealed that the as-spun Nd-free alloy displayed an entire nanocrystalline structure,whereas the as-spun Nd-added alloys held a nanocrystalline and amorphous structure and the degree of amorphization visibly increased with the rising of Nd content and spinning rate,suggesting that the addition of Nd facilitated the glass forming of the Mg2 Ni-type alloy.The electrochemical measurements indicated that the addition of Nd and melt spinning improved the electrochemical hydrogen storage performances of the alloys significantly.The discharge capacities of the as-cast and spun alloys exhibited maximum values when Nd content was x=10,which were 86.4,200.5,266.3,402.5 and 452.8 mAh/g corresponding to the spinning rate of 0(As-cast was defined as the spinning rate of 0 m/s),10,20,30 and 40 m/s,respectively.The cycle stability(S20,the capacity maintain rate at 20thcycle) of the as-cast alloy always rose with the increasing of Nd content,and those of the as-spun alloys exhibited the maximum values for Nd content x=10,which were 77.9%,83.4% 89.2% and 89.7%,corresponding to the spinning rate of 10,20,30 and 40 m/s,respectively.  相似文献   

4.
In this research, the microstructure evolution, mechanical properties, and creep mechanisms of Mg-12Gd-1MM-0.6Zr (wt%) alloy under different conditions were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and tensile creep tests. Regarding the microstructure of the as-cast sample, the average grain size is about 42 μm, and the eutectic compounds were determined to be Mg5(Gd0.8MM0.2). During homogenization, these eutectic compounds gradually dissolve, and Mg12MM particles are precipitated. During hot extrusion, complete dynamic recrystallization (DRX) occurs, resulting in equiaxial grains with an average grain size of about 12 μm and the formation of streamlines consisting of Mg12MM particles along the extrusion direction (ED). After T5 treatment (225 °C for 7 h), a large number of β′(Mg7Gd) phases are precipitated on the {11–20}α habit plane and are interconnected, forming an interlaced network structure. The ultimate tensile strength (Rm = 405 MPa) and yield strength (RP0.2 = 288 MPa) of the T5 sample are significantly higher than those of the as-extruded sample (Rm = 289 MPa, RP0.2 = 185 MPa), but the elongation (A = 4%) was remarkably lower than that of the as-extruded sample (A = 18%). When crept at 225 °C under 100 MPa, the steady-state creep rates of the as-cast, as-extruded, and T5 samples are 1.59 × 10–8, 1.08 × 10–8, and 1.40 × 10–8 s–1, respectively, and their total strains within 100 h are respectively breaking, 0.81%, and 0.92%, indicating that the as-extruded alloy exhibits the best creep resistance. TEM analysis reveals that, during the creep process of the T5 sample, the β′ particles coarsen and the precipitate-free zones (PFZs) widen, which increase the steady-state creep rate and the total strain within 100 h as compared with the as-extruded sample.  相似文献   

5.
In the present investigation, the effects of alloying elements (Sn, Pb) and grain refiner (Ag, Zr) on microstructure, mechanical and wear properties of as-cast Mg-Al-Zn alloys were studied. The alloys were prepared through melting-casting route under a protective atmosphere and cast into a permanent mould. The microstructure of the base alloy consisted of α-Mg, Mg17Al12 continuous eutectic phase at the grain boundary and Mg-Zn phase was distributed within the grains. Addition of Sn and Pb suppressed the formation of continuous Mg17Al12 eutectic phase and formed Pb enriched Mg2Sn precipitates at the grain boundary as well as inside the grain. The Ag and Zr addition to Mg-Al-Zn-Sn-Pb alloy suppressed the Mg17Al12 phase formation and refined the grains leading to improve mechanical properties. Addition of Sn, Pb and grain refiner (Ag, Zr) significantly enhanced the tensile strength and elongation but reduced hardness. The Ag addition imparted best tensile properties, where ultimate tensile strength (UTS) and elongation are 205?MPa and 8.0%, respectively. The fracture surfaces were examined under SEM which revealed cleavage facets and dimple formation. Therefore, the cleavage fracture and dimple rupture were considered as the dominant fracture mechanisms for developed Mg alloys. The cumulative volume loss of Mg alloys increased with sliding distance and applied load. The coefficient of friction decreased with sliding distance. The microscopic observation, analysis of the wear surface and coefficient of friction revealed that the wear mechanism of developed Mg alloys changes from abrasion oxidation to delamination wear.  相似文献   

6.
Effect of minor Gd addition on the microstructure, mechanical properties and wear behavior of as-cast Mg–5Sn-based alloy was investigated by means of OM, XRD, SEM, EDS, a super depth-of-field 3D system, standard high-temperature tensile testing and dry sliding wear testing. Minor Gd addition has strong effect on changing the morphology of the Mg–5Sn binary alloy. Gd addition benefits the grain refinement of the primary α-Mg phase, as well as the formation and homogeneous distribution of the secondary Mg2Sn phase. The mechanical properties of the Mg–5Sn alloys at ambient and elevated temperatures are significantly enhanced by Gd addition. The wear behavior of the Mg–5Sn alloy is also improved with minor Gd addition. The alloy with 0.8% Gd addition exhibits the best ultimate tensile strength and elongation as well as the optimal wear behavior. Additionally, the worn surface of the Mg–5Sn–Gd becomes smoother in higher Gd-containing alloys. The best wear behavior of alloy was exhibited when Gd addition was up to 0.8%, showing a much smoother worn surface than that of control sample. The improvement of tensile properties is mainly attributed to the refinement of microstructure and the increasing amount and uniform distribution of Mg2Sn phase. The larger amount of Mg2Sn phase uniformly distributed at the grain boundary of Mg–Sn–Gd alloys act as a lubrication during sliding, and combined with smaller grain size improve wear behavior of the binary alloy.  相似文献   

7.
8.
The current investigation reports detailed study on the microstructural evolution in the suction cast hypereutectic Ti71Fe29?x Sn x alloys during Sn addition with x = 0, 2, 2.5, 3, 3.85, 4.5, 6, and 10 at. pct and the solidification of these ternary alloys using SEM and TEM. These alloys have been prepared by melting high-purity elements using vacuum arc melting furnace under high-purity argon atmosphere. This was followed by suction casting these alloys in the water-cooled split Cu molds of diameters, ? = 1 and 3 mm, under argon atmosphere. The results indicate the formation of binary eutectic between bcc solid solution ??-Ti and B2 FeTi in all alloys. ??-Ti undergoes eutectoid transformation, ??-Ti ?? ??-Ti + FeTi, during subsequent solid-state cooling, leading to formation of hcp ??-Ti and FeTi. For alloys x < 2, the primary FeTi forms from the liquid before the formation of eutectic with minute scale Ti3Sn phase. For alloys with 2 ?? x ?? 10, the liquid is found to undergo ternary quasi-peritectic reaction with primary Ti3Sn, L+Ti3Sn ?? ??-Ti+FeTi, leading to formation of another kind of FeTi. In all the other alloy compositions (3.85 ?? x ?? 10), Ti3Sn and FeTi dendrites are observed in the suction cast alloys with profuse amount of Ti3Sn being formed for alloys with x ?? 4.5. The current study conclusively proves that the liquid undergoes ternary quasi-peritectic reaction involving four phases, L + Ti3Sn ?? ??-Ti + FeTi, which lies at the invariant point Ti69.2±0.8Fe27.4±0.7Sn3.4±0.2 (denoted by P). Below P, there is one univariant reaction, i.e., L ?? ??-Ti + FeTi for all alloy compositions, whereas above P, liquid undergoes one of the univariant reactions, i.e., L + ??-Ti ?? Ti3Sn (Sn = 2, 2.5, 3, and 4.5 at. pct) or L + FeTi ?? Ti3Sn for alloys (Sn = 6, 10 at. pct). For alloy with Sn = 3.85 at. pct, the ternary quasi-peritectic reaction is co-operated by two monovariant eutectic reactions, i.e., L ?? ??-Ti + FeTi below P and L ?? FeTi + Ti3Sn above P. Detailed microstructural information allows us to construct liquidus projection of the investigated alloys. The results are critically discussed in the light of available literature data.  相似文献   

9.
REMg 8.35Ni2.18Al0.21 (RE=La, Ce, Pr, and Nd) alloys were prepared by induction melting and following annealing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the alloys were composed of Mg2Ni, (La, Pr, Nd)Mg2Ni, (La, Ce)2Mg17 , (Ce, Pr, Nd)Mg12 and Ce2Ni7 phases. The above phases were disproportioned into Mg2NiH4 , MgH2 and REH x (x=2.51 or 3) phases in hydriding. CeH2.51 phase transformed into CeH2.29 phase in dehydriding, whereas LaH3 , PrH3 and NdH3 phases remained unchanged. The PrMg8.41Ni2.14Al0.20 alloy had the fastest hydriding kinetics and the highest dehydriding plateau pressure while the CeMg8.35Ni2.18Al0.21 alloy presented the best hydriding/dehydriding reversibility. The onset hydrogen desorption temperature of the CeMg8.35Ni2.18Al0.21 hydride decreased remarkably owing to the phase transformation between the CeH2.51 and the CeH2.29 .  相似文献   

10.
Mg-9Li-3Al-xSr (LA93-xSr, x = 0, 1.5, 2.5, and 3.5 wt pct) alloys were cast and extruded at 533 K (260 °C) with an extrusion ratio of 28. The microstructure and mechanical response are reported and discussed paying particular attention to the influence of extrusion and Sr content on phase composition, strength, and ductility. The results of the current study show that LA93-xSr alloys contain both α-Mg (hcp) and β-Li (bcc) matrix phases. Moreover, the addition of Sr refines the grain size in the as-cast alloys and leads to the formation of the intermetallic compound (Al4Sr). Our results show significant grain refinement during extrusion and almost no influence of Sr content on the grain size of the extruded alloys. The microstructure evolution during extrusion is governed by continuous dynamic recrystallization (CDRX) in the α-Mg phase, whereas discontinuous dynamic recrystallization (DDRX) occurs in the β-Li phase. The mechanical behavior of the extruded LA93-xSr alloy is discussed in terms of grain refinement and dislocation strengthening. The tensile strength of the extruded alloys first increases and then decreases, whereas the elongation decreases monotonically with increasing Sr; in contrast, hardness increases for all Sr compositions studied herein. Specifically, when Sr content is 2.5 wt pct, the extruded Mg-9Li-3Al-2.5Sr (LAJ932) alloy exhibits a favorable combination of strength and ductility with an ultimate tensile strength of 235 MPa, yield strength of 221 MPa, and an elongation of 19.4 pct.  相似文献   

11.
Ti57−x Cu15Ni14Sn4+x Nb10 (x = 0, 5, or 10) alloys were prepared by copper mold casting. At Sn = 4 at. pct, a dendrite/ultrafine-structured multicomponent alloy was obtained, which exhibits 1271 MPa yield strength, 77 GPa Young’s modulus, and 2 pct plasticity at room temperature for 3-mm-diameter samples. The cooling rate significantly affects the as-cast microstructure and the mechanical properties. For 5-mm-diameter samples, the alloy exhibits 1226 MPa yield strength, 63 GPa Young’s modulus, and 2.5 pct plasticity. At Sn = 9 at. pct, Ti-, Sn-, and Nb-rich particles precipitate primarily. This near-hypereutectic alloy composition leads to the precipitation of intermetallics, which deteriorate the mechanical properties and result in the coexistence of ductile and brittle fracture mechanisms. At Sn = 14 at. pct, the alloy composition is completely in the intermetallic region, thus inducing the formation of Ti2Cu, Ti2Ni, and Ti3Sn intermetallics. The alloy becomes very brittle because the intermetallic compounds dominate the fracture process.  相似文献   

12.
Age hardening,microstructure and mechanical properties of Mg-xY-1.5MM-0.4Zr (x=0,2,4,6 wt.%) alloys (MM represents Ce-based misch-metal) were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the formed precipitates being responsible for age hardening changed from fine hexagonal-shaped equilibrium Mg12MM phase to metastable β’ phase with bco crystal structure when Y was added into Mg-1.5MM-0.4Zr alloy,and the volume fraction of precipitate phases also increased. With the increase of Y content in Mg-Y-1.5MM-0.4Zr alloys,it was found that the age hardening was enhanced,the grain sizes became finer and the tensile strength was improved. The cubic-shaped β-Mg24Y5 precipitate phases were observed at grain boundaries in Mg-6Y-1.5MM-0.4Zr alloy. It was suggested that the distribution of prismatic shaped β’ phases and cubic shaped β-Mg24Y5 precipitate phases in Mg matrix might account for the remarkable enhancement of tensile strength of Mg-Y-MM-Zr alloy. It was shown that the Mg-6Y-1.5MM-0.4Zr alloy was with maximum tensile strength at aged-peak hardness,UTS of 280 MPa at room temperature and 223 MPa at 250 oC,respectively.  相似文献   

13.
The microstructure and properties of the Mg-9Y-1MM-0.6Zr alloy were studied by scanning electron microscopy, optical microscopy, transmission electron microscopy, hardness and tensile testing. Homogeni...  相似文献   

14.
The effects of precipitates on grain size and mechanical properties of as-cast AZ3 1-x%Nd magnesium alloy were investi- gated, and the affecting mechanism was also discussed. The results indicated that Al2Nd phase, AlllNd3 phase and a few AI-Mn-Nd-Fe phase were furmed when adding 0.38 wt.%-1.46 wt.% Nd into AZ31 melt, coarse AI2Nd transformed into Al11Nd3 gradually with the increasing of Nd content. Due to structure and size transformation and content increasing of AI-Nd phase, the grain size of AZ31-x% Nd alloy increased firstly, and then decreased with the increment of Nd content. After reaching a minimum value, once again it rose up, provided that Nd content was further increased. The tensile property reached its optimal value when the adding amount of Nd content was 1.05 wl.%, however, adding excessive amount of Nd deteriorated both ultimate strength and elongation ofAZ31 alloy.  相似文献   

15.
Melting method was used to obtain La2Mg17 alloy,and then Ni powder was added by mechanical alloying method.The kinetics of hydriding process and electrochemical properties of La2Mg17-x wt.%Ni(x=0,50,100,150,200) composites were investigated.X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses showed that the crystal structure of composite alloy gradually transformed into amorphous phase by the effect of ball milling and Ni powders.The research of hydrogen absorption properties found that La2Mg 17-50 wt.%Ni reached the highest hydrogen absorption than other alloys with more addition of Ni content,reached to 5.796 wt.% at 3 MPa,and up to 5.229 wt.% merely in 2 min,which revealed that the amorphous phase reduced the H occupation of the lattice clearance,resulting in the decline of hydrogen absorption capacity.The electrochemical tests indicated that the maximum discharge capacity increased to 353.1 mAh/g at 30 oC,however,the cycle stability decreased considerably.A series of kinetic measurements demonstrated that the controlling steps of electrochemical process of La 2 Mg 17-x wt.%Ni alloys transferred from hydrogen diffusion on alloy bulk(x=50,100) to hydrogen diffusion on both alloy bulk and surface(x=150,200).  相似文献   

16.
The microstructural evolution of Mg-7Al-2Sn (AT72) alloy processed by super vacuum die-casting and heat treated at various conditions was studied. The results showed that the dendritic microstructure in the as-cast AT72 alloy consisted of α-Mg, Mg2Sn, and Mg17Al12 phases. After solution treatment at temperatures ranging from 663 K to 703 K (390 °C to 430 °C), the Mg17Al12 phase dissolved into the Mg matrix entirely, while the Mg2Sn phase partially dissolved into matrix. An average grain size of about 40 μm in the alloy could be achieved after solution treatment at 683 K (410 °C) for 16 hours. A large amount of lath-shaped precipitates of Mg2Sn and Mg17Al12 was observed in the aged AT72 alloy. The results of tensile property evaluation at room temperature showed that the ductility of the solution-treated alloy was dramatically improved, in comparison with the as-cast alloy. In the peak aged condition, the tensile strength of the alloy was increased, which was attributed to the deposition of fine Mg17Al12 and Mg2Sn precipitates during the aging treatment.  相似文献   

17.
In this work, the effect of cobalt on the phase formation and mechanical properties of rapidly solidified Cu50?xCoxZr50 (x?=?2, 5, 10, and 20?at.?pct) alloys was investigated. CuZr martensite forms in the case of low Co contents (x?=?2 and 5?at.?pct), while in the alloys with 10 and 20?at.?pct Co, the B2 phase is stable even at room temperature. The deformation behavior of the rods under compressive loading depends strongly on the microstructure and, thus, on the alloy composition. Cobalt affects the fracture strength of the as-cast samples, and deformation is accompanied by two yield stresses for high Co-content alloys, which undergo deformation-induced martensitic transformation.  相似文献   

18.
The microstructures and mechanical properties of the Mg-7.68Gd-4.88Y-1.32Nd-0.63A1-0.05Zr magnesium alloy were investigated both in the as-cast condition and after homogenization heat treatment from 535 to 555 ℃ in the time range 0-48 h by op- tical microscopy, scanning electron microscopy and hardness measurement. The as-cast alloy consisted of ct-Mg matrix, Mgs(Y0.5Gd0.5) phase which is a eutectic phase, strip of Al2(Y0.6Gd0.4) phase, little A13Zr and Mg(Y3Gd) phase. With the increasing of homogenization temperature and time, the Mgs(Y0.5Gd0.5) phase was completely dissolved into the matrix. The Al2(Y0.6Gd0.4) phase was almost not dissolved which impeded grain boundaries motion making the grain size almost not changed in the process of ho- mogenization. The optimum homogenization condition was 545 ℃/16 h. The tensile strength increased, yield strength decreased and the plasticity improved obviously after 545 ℃/16 h homogenization treatment.  相似文献   

19.
The nanocrystalline and amorphous Mg2Ni-type Mg2–xLaxNi (x=0,0.2) hydrogen storage alloys were synthesized by melt-spinning technique.The as-spun alloy ribbons were obtained.The microstructures of the as-spun ribbons were characterized by X-ray diffraction (XRD),high resolution transmission electronic microscopy (HRTEM) and electron diffraction (ED).The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus,and their electrochemical kinetics were tested by an automatic galvanostatic system.The electrochemical impedance spectrums (EIS) were plotted by an electrochemical workstation (PARSTAT 2273).The hydrogen diffusion coefficients in the alloys were calculated by virtue of potential-step method.The obtained results showed that no amorphous phase was detected in the as-spun La-free alloy,but the as-spun alloys substituted by La held a major amorphous phase,con-firming that the substitution of La for Mg markedly intensified the glass forming ability of the Mg2Ni-type alloy.The substitution of La for Mg notably improved the electrochemical hydrogen storage kinetics of the Mg2Ni-type alloy.Furthermore,the hydrogen storage kinetics of the experimental alloys was evidently ameliorated with the spinning rate growing.  相似文献   

20.
RE3-xMgx(Ni0.7Co0.2Mn0.1)9 (x=0.5-1.25) alloys were prepared by induction melting and the influence of the partial substitution of RE (where RE stands for La-rich mischmetal) by Mg on the hydrogen storage and electrochemical properties of the alloys were investigated systematically. These alloys mainly consisted of three phases, La(Ni,Mn,Co)5 phase, La2Ni7 phase and Mg2Ni phase. The P-C-T isotherms showed that with Mg content increasing in the alloys, the hydrogen storage capacity first increased and reached the maximum capacity of 1.36 wt.% when x=1.0, and then decreased with x increasing further. Electrochemical studies revealed that the discharge capacity reached the maximum value of 380 mAh/g and the alloy electrode presented better cyclic stability when RE/Mg=2. The high rate discharge ability of the alloy electrodes was also improved by the substitution of Mg for RE. The RE2Mg(Ni0.7Co0.2Mn0.1)9 alloy exhibited better hydrogen absorption kinetics (x=1.0).)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号