首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The microstructure and properties of the Mg-9Y-1MM-0.6Zr alloy were studied by scanning electron microscopy, optical microscopy, transmission electron microscopy, hardness and tensile testing. Homogeni...  相似文献   

2.
The microstructure evolution and mechanical properties of Mg-15Gd-3Y alloy were investigated in the as-cast and heat treated conditions.The microstructure evolution from as-cast to cast-T4 states involved α-Mg solid solution+Mg5(Gd,Y) phase→α-Mg supersatu-rated solid solution+rare earths compound Mg3(Gd1.26,Y0.74)→α-Mg supersaturated solid solution+rare earths compound Mg3(Gd0.745,Y1.255).It showed that 480 oC/4 h was the optimal solution treatment parameter.If the solution temperature was high or the holding time was long,such as 520 oC/16 h,an overheating phenomenon would be induced,which had a detrimental effect on the mechanical properties.When age-ing at 225 and 200 oC,the alloy would exhibit a significant age-hardening response and great long-time-age-hardening potential,respectively.The best mechanical properties were obtained at the parameters of 480 oC/4 h+225 oC/16 h,with the UTS of 257.0 MPa and elongation of 3.8%.  相似文献   

3.
The microstructural evolution of Mg-7Al-2Sn (AT72) alloy processed by super vacuum die-casting and heat treated at various conditions was studied. The results showed that the dendritic microstructure in the as-cast AT72 alloy consisted of α-Mg, Mg2Sn, and Mg17Al12 phases. After solution treatment at temperatures ranging from 663 K to 703 K (390 °C to 430 °C), the Mg17Al12 phase dissolved into the Mg matrix entirely, while the Mg2Sn phase partially dissolved into matrix. An average grain size of about 40 μm in the alloy could be achieved after solution treatment at 683 K (410 °C) for 16 hours. A large amount of lath-shaped precipitates of Mg2Sn and Mg17Al12 was observed in the aged AT72 alloy. The results of tensile property evaluation at room temperature showed that the ductility of the solution-treated alloy was dramatically improved, in comparison with the as-cast alloy. In the peak aged condition, the tensile strength of the alloy was increased, which was attributed to the deposition of fine Mg17Al12 and Mg2Sn precipitates during the aging treatment.  相似文献   

4.
The microstructure and tensile properties of the as-cast and solution treatment Mg-4.5Zn-1Y-xNd-0.5Zr (x=0, 1 wt.%, 2 wt.%, 3 wt.%) alloys were investigated. The results showed that the microstructure of Mg-4.5Zn-1Y-0.5Zr alloy consisted of α-Mg, Zn-Zr, W (Mg3Y2Zn3) and I (Mg3YZn6) phases. With the addition of Nd, I-phase disappeared and Mg3Y2Zn3 phase changed into Mg3(Nd,Y)2Zn3 phase. When the content of Nd reached 3 wt.%, T phase, i.e., ternary Mg-Zn-Nd phase, formed. In addition, with the increase of Nd content in the alloys, the secondary dendritic arm spacing decreased, while the amount of intermetallic phases increased. For as-cast Mg-4.5Zn-1Y-xNd-0.5Zr alloys, after solution treatment, microsegregation was eliminated and the shape of eutectic structure of α-Mg+W transformed from lamellar into spherical. The tensile strength and elongation of Mg-4.5Zn-1Y- 3Nd-0.5Zr alloy were increased from 219.2 MPa and 11.0% to 247.5 MPa and 20.0%, respectively.  相似文献   

5.
The effects of minor Zn(0.2 at%,0.4 at%,0.6 at%) on the microstructures and mechanical properties of Mg-1.4 Gd-1.2 Y-0.15 Zr(at%) alloys were systematically explored.Results reveal that increasing Zn content leads to the increase of the intergranular phases and the change of their composition from Mg_24(Gd,Y)_5 phase and(Mg,Zn)_3(Gd,Y) phase to 18 R-LPSO phase and(Mg,Zn)_3(Gd,Y) phase.Mg_24(Gd,Y)_5 phase is body-centered cubic structure and shares the same lattice constant with Mg_24Y_5 while(Mg,Zn)_3(Gd,Y)phase is face-centered cubic structure with lattice constant of 0.72 nm,slightly lower than Mg_3Gd.18RLPSO structure is identified to be monoclinic with c-axis not strictly vertical to the bottom surface but93.5°.The growth patterns of intergranular phases change from the divorced growth to coupled growth as compositions change.Moreover,the mechanical performance improves with Zn rising,ascribed to the decrease of brittle phases at grain boundaries and the increase of LPSO structure phases.  相似文献   

6.
The present article reports and discusses the results of the microstructural characterization of various modifications of Ll2 trialuminides containing various titanium contents, including the first ever report on their degree of ordering. The Ll2 trialuminide alloys Al3Ti + X, where X = Cu, Fe, Cr, and Mn were studied. The as-cast structure contains a very low level of porosity, and the amount of second phase depends on the particular alloy. After homogenization, the second phase is reduced in almost all the alloys to the level less than 0.5 pct, except for the Mn-high Ti alloy in which it remains at about 20 pct and its composition is 67.9 ± 0.6 at. pct Al, 2.2 ± 0.6 at. pct Mn, and 29.9 ± 0.3 at. pct Ti. In almost all the alloys, porosity after homogenization increases about twofold, except in the Al3Ti + Cr alloy in which it remains at almost the as-cast level. Limited transmission electron microscopic observations have revealed the existence of very fine (≈10 nm) unidentified precipitates in the homogenized Al3Ti + Cu alloy. The homogenized Al3Ti + Cr and Mn alloys have greater lattice parameters than the Al3Ti + Fe and Cu alloys. It is also found that the long-range order parameterS of the ho- mogenized Ll2 Al3Ti + X alloys dramatically decreases with increasing titanium content.  相似文献   

7.
Age hardening,microstructure and mechanical properties of Mg-xY-1.5MM-0.4Zr (x=0,2,4,6 wt.%) alloys (MM represents Ce-based misch-metal) were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the formed precipitates being responsible for age hardening changed from fine hexagonal-shaped equilibrium Mg12MM phase to metastable β’ phase with bco crystal structure when Y was added into Mg-1.5MM-0.4Zr alloy,and the volume fraction of precipitate phases also increased. With the increase of Y content in Mg-Y-1.5MM-0.4Zr alloys,it was found that the age hardening was enhanced,the grain sizes became finer and the tensile strength was improved. The cubic-shaped β-Mg24Y5 precipitate phases were observed at grain boundaries in Mg-6Y-1.5MM-0.4Zr alloy. It was suggested that the distribution of prismatic shaped β’ phases and cubic shaped β-Mg24Y5 precipitate phases in Mg matrix might account for the remarkable enhancement of tensile strength of Mg-Y-MM-Zr alloy. It was shown that the Mg-6Y-1.5MM-0.4Zr alloy was with maximum tensile strength at aged-peak hardness,UTS of 280 MPa at room temperature and 223 MPa at 250 oC,respectively.  相似文献   

8.
A spheroidal Al3(Zr,Sc) precipitate with a double-shell structure, comprising a Sc-enriched core enveloped by a Zr-enriched inner shell and a Sc-enriched outer shell (~9 nm in thickness), appears in an Al–0.2Zr–0.1Sc alloy cable after thermomechanical treatment. The average diameter of the spheroidal Al3(Zr,Sc) precipitate is approximately 80 nm. The double-shelled Al3(Zr,Sc) precipitate presents three different interfaces and is semi-coherent with the Al matrix. Atom probe tomography (APT) analyses further show that the outer shell of Al3(Zr,Sc) precipitate is Sc element enrichment. The electrical conductivity of Al–0.2Zr–0.1Sc alloy cable increases by 6.5 MS/m within the aging time from 0.2 to 100 h at 350 °C, with double-shelled Al3(Zr,Sc) precipitate.  相似文献   

9.
In this research, the microstructure evolution, mechanical properties, and creep mechanisms of Mg-12Gd-1MM-0.6Zr (wt%) alloy under different conditions were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and tensile creep tests. Regarding the microstructure of the as-cast sample, the average grain size is about 42 μm, and the eutectic compounds were determined to be Mg5(Gd0.8MM0.2). During homogenization, these eutectic compounds gradually dissolve, and Mg12MM particles are precipitated. During hot extrusion, complete dynamic recrystallization (DRX) occurs, resulting in equiaxial grains with an average grain size of about 12 μm and the formation of streamlines consisting of Mg12MM particles along the extrusion direction (ED). After T5 treatment (225 °C for 7 h), a large number of β′(Mg7Gd) phases are precipitated on the {11–20}α habit plane and are interconnected, forming an interlaced network structure. The ultimate tensile strength (Rm = 405 MPa) and yield strength (RP0.2 = 288 MPa) of the T5 sample are significantly higher than those of the as-extruded sample (Rm = 289 MPa, RP0.2 = 185 MPa), but the elongation (A = 4%) was remarkably lower than that of the as-extruded sample (A = 18%). When crept at 225 °C under 100 MPa, the steady-state creep rates of the as-cast, as-extruded, and T5 samples are 1.59 × 10–8, 1.08 × 10–8, and 1.40 × 10–8 s–1, respectively, and their total strains within 100 h are respectively breaking, 0.81%, and 0.92%, indicating that the as-extruded alloy exhibits the best creep resistance. TEM analysis reveals that, during the creep process of the T5 sample, the β′ particles coarsen and the precipitate-free zones (PFZs) widen, which increase the steady-state creep rate and the total strain within 100 h as compared with the as-extruded sample.  相似文献   

10.
Ten solid terbium complexes with 2-pyrazinecarboxylic acid (Hpyca) and butanedioic acid (BDAH) were synthesized via coprecipitation method and characterized by elemental, EDTA titration, inductively coupled plasma (ICP), thermogravimetry-differential scanning calorimetry (TG-DSC) and infrared (IR) analyses. The results showed that the complexes had the compositions of Tb(pyca)(BDA)·2H2O, Tb0.5Y0.5(pyca)(BDA)·2H2O, Tb0.5La0.5(pyca)(BDA)·3H2O, Tb0.5Gd0.5(pyca)(BDA)·2H2O, Tb0.7Y0.3(pyca)(BDA)·3H2O, Tb0.7La0.3(pyca)(BDA)·0.5H2O, Tb0.7Gd0.3(pyca)(BDA)·H2O, Tb0.6Y0.4(pyca)(BDA)·2.5H2O, Tb0.6La0.4 (pyca)(BDA)·2.5H2O and Tb0.6Gd0.4(pyca)(BDA)·3H2O. IR spectra indicated that the rare earth ions coordinated with the carboxylic oxygen atoms of Hpyca and BDAH. Luminescence spectra showed that the doped La3+, Y3+ or Gd3+ ions did not affect the luminescence emission peak positions, but remarkably increased the luminescent intensities of terbium complexes. Furthermore, the doped lanthanide complexes showed longer luminescence lifetimes and higher quantum yields than pure terbium complex. The enhanced luminescence efficiencies of Tb3+ ions in the doped complexes might result from the antenna effect of the two carboxylate ligands as well as the decrease of the self-quench of the Tb3+ ions induced by the doped lanthanide ions.  相似文献   

11.
The effects of Sm on the microstructure and mechanical properties of Mg-11 Gd-2 Y-0.6 Al alloy were investigated by X-ray diffraction,optical microscopy,scanning electron microscopy,energy dispersive spectrometry and high resolution transmission electron microscopy.Based on the theory of edge—edge matching and electronegativity theory,the mechanism of grain refinement is discussed.The strengthening mechanism is expounded conveniently from fine grain strengthening,coherent strengthening,precipitation strengthening and grain boundary strengthening.The results show that the micro structure of Mg-11 Gd-2 Y-0.6 Al alloy is mainly composed of a-Mg matrix,Mg_5 Gd and Mg_(24)Y_5 phases.The addition of Sm forms Mg_(41)Sm_5 phase in the alloy and refines the alloy.The addition of Sm significantly improves the mechanical properties of the alloy at room and high temperatures.When the addition of Sm is 3 wt%,the tensile strengths of the alloy at room temperature and high temperature(200℃) reach the maximum value 292 and 321 MPa,respectively.The fracture mode of the alloy at different temperatures is mainly brittle fracture and intercrystalline fracture.  相似文献   

12.
The dissolution and melting of Al2Cu phase in solution heat-treated samples of unmodified Al-Si 319.2 alloy solidified at ≈10 °C were studied using optical microscopy, image analysis, electron probe microanalysis (EPMA), and differential scanning calorimetry (DSC). The solution heat treat-ment was carried out in the temperature range 480 °C to 545 °C for solution times of up to 24 hours. Of the two forms of Al2Cu found to exist,i.e., blocky and eutectic-like, the latter type is more pronounced in the unmodified alloy (at ≈10 °C) and was observed either as separate eutectic pockets or precipitated on preexisting Si particles, β-iron phase needles, or the blocky Al2Cu phase. Dissolution of the (Al + Al2Cu) eutectic takes place at temperatures close to 480 °C through frag-mentation of the phase and its dissolution into the surrounding Al matrix. The dissolution is seen to accelerate with increasing solution temperature (505 °C to 515 °C). The ultimate tensile strength (UTS) and fracture elongation (EL) show a linear increase when plotted against the amount of dissolved copper in the matrix, whereas the yield strength (YS) is not affected by the dissolution of the Al2Cu phase. Melting of the copper phase is observed at 540 °C solution temperature; the molten copper-phase particles transform to a shiny, structureless phase upon quenching. Coarsening of the copper eutectic can occur prior to melting and give rise to massive eutectic regions of (Al + Al2Cu). Unlike the eutectic, fragments of the blocky Al2Cu phase are still observed in the matrix, even after 24 hours at 540 °C.  相似文献   

13.
Isothermal sections of the diagram of the Al–Fe–Si–Zr alloy at temperatures of 450 and 600°C, as well as polythermal sections at concentrations of silicon up to 2 wt % and zirconium up to 1 wt %, are analyzed using computational methods with the help of Thermo-Calc software. It is shown that the favorable phase composition consisting of the aluminum solid solution (Al), the Al8Fe2Si phase, and Zr (which completely enters the composition of the solid solution (Al) during the formation of the cast billet) can be attained in equilibrium conditions at silicon concentrations of 0.27–0.47 wt %. To implement the above-listed structural components in nonequilibrium conditions and ensure that Zr enters the (Al) composition, experimental ingots were fabricated at an elevated cooling rate (higher than 10 K/s). A metallographic analysis of the cast structure of experimental samples revealed the desired structure with contents of 0.25 wt % Si and 0.3 wt % Zr in the alloy. The microstructure of the Al–1% Fe–0.3% Zr–0.5% Si alloy also contains the eutectic (Al) + Al8Fe2Si; however, the Al8Fe2Si phase partially transforms into Al3Fe. The structure of the alloy with 0.25 wt % Si in the annealing state at 600°C contains fragmented particles of the degenerate eutectic (Al) + Al8Fe2Si along the boundaries of dendritic cells. It is established that the Si: Fe = 1: 2 ratio in the alloy positively affects its mechanical properties, especially hardness, without substantially lowering the specific conductivity during annealing, which is explained by the formation of the particles of the Al8Fe2Si phase of the compact morphology in the structure. Moreover, silicon accelerates the decay of the solid solution by zirconium, which is evidenced by the experimental plots of the dependence of hardness and resistivity on the annealing step. The best complex of properties was shown by the Al–1% Fe–0.3% Zr–0.25% Si alloy in the annealing stage at 450°C with the help of the optimization function at specified values of hardness and resistivity.  相似文献   

14.
A complex nitride of Al x Mg(1?x)N was observed in silicon steels. A thermodynamic model was developed to predict the ferrite/nitride equilibrium in the Fe-Al-Mg-N alloy system, using published binary solubility products for stoichiometric phases. The model was used to estimate the solubility product of nitride compound, equilibrium ferrite, and nitride compositions, and the amounts of each phase, as a function of steel composition and temperature. In the current model, the molar ratio Al/(Al?+?Mg) in the complex nitride was great due to the low dissolved magnesium in steel. For a steel containing 0.52 wt pct Als, 10 ppm T.Mg., and 20 ppm T.N. at 1100 K (827 °C), the complex nitride was expressed by Al0.99496Mg0.00504N and the solubility product of this complex nitride was 2.95?×?10?7. In addition, the solution temperature of the complex nitride increased with increasing the nitrogen and aluminum in steel. The good agreement between the prediction and the detected precipitate compositions validated the current model.  相似文献   

15.
The microstructural evolution and mechanical properties of an AC8A/12 vol Pct A12O3 (sf) composite fabricated by squeeze casting were characterized. Thermal treatments included the normal T6 temper and thermal exposure at 150 °C, 250 °C, 300 °C, and 350 °C for 400 hours. The predominant strengthening phase in the matrix appeared to be β′ (Mg2Si) needles. Bulk pure Si particles and dendrites were commonly seen. Large particles, termed asB-type phase, might include hexagonal Al3(Ni, Cu, Fe, Si, Mg)2 and orthorhombic Al3(Ni, Cu, Fe, Si, Mg) phases. Both the Si andB dispersoids were not obviously affected by artificial aging at 150 °C to 350 °C. In certain cases, large cubic β (Mg2Si) particles, hexagonalQ′ orQ (Al4Cu2Mg8Si7) precipitates, and numerous small Al particles inside Si dispersoids were also seen. No interfacial reaction product was observed along the fiber/ matrix interface even after long exposure at 350 °C. Amorphous SiO2 gels, which were used as a binder during fabrication, were occasionally observed. The tensile and fatigue behavior of the AC8A alloys and composites after the preceding thermal exposures were evaluated over the temperature range of 25 °C to 350 °C. The composites showed similar strength as the matrix alloy at room temperature but exhibited higher strength at temperatures above 250 °C, with the sacrifice of the lower ductility. The strength levels of both the alloys and composites were significantly reduced after long thermal exposure, especially for temperatures higher than 250 °C. The loss of strength after long-term exposure at elevated temperatures may be attributed to age-softening of the matrix.  相似文献   

16.
The influence of solidification rate on the solution-treatment response has been investigated for an Al-7Si-0.3Mg alloy and an Al-8Si-3Cu-0.5Mg alloy. The concentrations of Mg, Cu, and Si in the matrix after different solution-treatment times were measured using a wavelength dispersive spectrometer. All Mg dissolves into the matrix for the Al-Si-Mg alloy when solution treated at 803 K (530 °C) because the π-Fe phase is unstable and transforms into short β-Fe plates which release Mg. The Q-Al5Mg8Cu2Si6 phase do not dissolve completely at 768 K (495 °C) in the Al-Si-Cu-Mg alloy and the concentration in the matrix reached 0.22 to 0.25 wt pct Mg. The distance between π-Fe phases and Al2Cu phases was found to determine the solution-treatment time needed for dissolution and homogenization for the Al-Si-Mg alloy and Al-Si-Cu-Mg alloy, respectively. From the distance between the phases, a dimensionless diffusion time was calculated which can be used to estimate the solution-treatment times needed for different coarsenesses of the microstructure. A model was developed to describe the dissolution and homogenization processes.  相似文献   

17.
In the present investigation, the effects of alloying elements (Sn, Pb) and grain refiner (Ag, Zr) on microstructure, mechanical and wear properties of as-cast Mg-Al-Zn alloys were studied. The alloys were prepared through melting-casting route under a protective atmosphere and cast into a permanent mould. The microstructure of the base alloy consisted of α-Mg, Mg17Al12 continuous eutectic phase at the grain boundary and Mg-Zn phase was distributed within the grains. Addition of Sn and Pb suppressed the formation of continuous Mg17Al12 eutectic phase and formed Pb enriched Mg2Sn precipitates at the grain boundary as well as inside the grain. The Ag and Zr addition to Mg-Al-Zn-Sn-Pb alloy suppressed the Mg17Al12 phase formation and refined the grains leading to improve mechanical properties. Addition of Sn, Pb and grain refiner (Ag, Zr) significantly enhanced the tensile strength and elongation but reduced hardness. The Ag addition imparted best tensile properties, where ultimate tensile strength (UTS) and elongation are 205?MPa and 8.0%, respectively. The fracture surfaces were examined under SEM which revealed cleavage facets and dimple formation. Therefore, the cleavage fracture and dimple rupture were considered as the dominant fracture mechanisms for developed Mg alloys. The cumulative volume loss of Mg alloys increased with sliding distance and applied load. The coefficient of friction decreased with sliding distance. The microscopic observation, analysis of the wear surface and coefficient of friction revealed that the wear mechanism of developed Mg alloys changes from abrasion oxidation to delamination wear.  相似文献   

18.
The microstructure and mechanical properties of aged Mg-10Y-2.5Sm alloy were investigated. The results showed that the microstructure of the alloy consisted of α-Mg matrix and Mg24Y5 phase, and fine Mg24Y5 particles distributed in a-Mg matrix uniformly and dispersedly. Sm enhanced α-Mg matrix and Mg24Y5 phase by solid solution effect. At 200-300 °C, the ultimate tensile strengths were more than 200 MPa and the elongations were about 3%. Compared with those at room temperature, the mechanical properties had no obvious changes.  相似文献   

19.
The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.  相似文献   

20.
The purpose of this study is to investigate the effect of varying Pb additions on the precipitation sequence of the as-cast and aged AZ91 alloy. The amount of discontinuous precipitate gets reduced by increasing the Pb addition. The phase fraction of as-cast and aged alloys demonstrates that by Pb addition Mg17Al12 phase is reduced to 37.7 and 38.7 % respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号