首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Two kinds of germanate glasses singly doped with the ion concentration of 2.0mol.%Tm3+ and 2.0mol.%Ho3+, respectively, were prepared. According to McCumber theory, the absorption and stimulated emission cross-sections corresponding to the 3H6←→3F4 transitions of Tm3+ (at 1.8 μm) and the 5I8←→5I7 transitions of Ho3+ (at 2.0 μm) were obtained, and respective gain cross-section spectra were also computed as a function of population inversion according to absorption and emission cross-sections and the ion concentrations. For Tm3+-doped germanate glasses, the maximum of the absorption, emission, and gain cross-sections reached a value higher than those reported for fluorozirconate, fluoride, and oxyfluoride glasses. For Ho3+-doped germanate glasses, the maximum of absorption, emission, and gain cross-sections reached a value higher than that reported for fluorozircoaluminate glasses. Hence, these Tm3+-doped and Ho3+-doped germanate glasses exhibited an advantage for application in mid-infrared lasers at about 1.8 and 2.0 μm wavelength.  相似文献   

2.
Dy3 -doped Ge-Ga-Se chalcogenide glasses and GeSe2-Ga2Se3-CsI chalcohalide glasses were prepared. The absorption, emission properties, and local structure of the glasses were investigated. When excited at 808 nm diode laser, intense 1.32 and 1.55 μm near-infrared luminescence were observed with full width at half maximum (FWHM) of about 90 and 50 nm, respectively. The lifetime of the 1.32 μm emission varied due to changes in the local structure surrounding Dy3 ions. The longest lifetime was over 2.5 ms, and the value was signifi-cantly higher than that in other Dy3 -doped glasses. Some other spectroscopic parameters were calculated by using Judd-Ofelt theory. Meanwhile, Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses showed good infrared transmittance. As a result, Dy3 -doped Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses were believed to be useful hosts for 1.3 μm optical fiber amplifier.  相似文献   

3.
The spectroscopic properties of lithium borate glasses as a function of Nd3+ ions concentration were reported.Optical absorption spectra of these glasses showed a number of absorption bands in ultra violet and visible region.Optical absorption edge was found to shift towards the longer wavelength(red shift) with increase in Nd2O3.Luminescence spectra revealed three major bands at 902, 1063 and 1334 nm which was due to 4F3/2→4I9/2, 11/2 &13/2 transitions of Nd3+ ions.Luminescence intensity was maximum for 1 mol.% Nd2O3 and further increase in Nd2O3 resulted in luminescence quenching.The luminescence quenching behavior at higher concentration of Nd2O3 was attributed to the Nd3+-Nd3+ interaction in the glass matrix.An absorption and emission property of these glasses suggested that these glasses could be useful for 1.06 μm infrared laser applications.  相似文献   

4.
yD3+/Tm3+ co-doped and yD3+/Ho3+/Tm3+ tri-doped tellurite glasses were synthesized by fusing the mixture of TeO2, PbF2, AIF3, BaF2, Yb2O3, Tm203 and H0203 in a cortmdum crucible at 850 ℃ for 20 min. The synthesized glasses were characterized by upconversion emission spectra under the excitation of 980 nm laser, and the emission colors were investigated according to the CIE-1931 standards. The results indicated that yD3+/Tm3+ co-doped tellurite glass exhibited blue upconversion emission with favor- able color coordinates of (0.20, 0.07). Yb3+, HO3+ and Tm3+ tri-doped tellurite glasses presented white upconversion luminescence under a single 980 nm laser excitation. Moreover, a very wide range of emission colors could be tuned by altering Ho3+ concentration. Combining the contribution of adjusting Ho3+ concentration and pump power, near equal energy white light was obtained.  相似文献   

5.
A series of highly Er^3 /Yb^3 co-doped fluoroaluminate glasses were investigated in order to develop a microchip laser at 1.54μm under 980nm excitation. Measurements of absorption, emission and up-conversion spectra were performed to examine the effect of concentration quenching on spectroscopic properties. In the glasses with Er^3 concentrations below 10% (mol fraction), concentration quenching is low and the Er^3 /Yb^3 co-doped fluoroaluminate glasses gave stronger fluorescence of 1.54μm from the 4113/2→^4I15/2 transition than those of Er^3 singly-doped glasses. In the glass with Er^3 concentrations above 10%, concentration quenching of 1.54μm obviously occurs more than that of the Er^3 singly-doped samples because of the back energy-transfer from Er^3 to Yb^3 . To obtain the highest emission efficien-cy at 1.54μm, the optimum doping-concentration ratio of Er^3 /Yb^3 is found to be approximately 1 : 1 in mol fraction when the Er^3 concentration is less than 10%.  相似文献   

6.
The 2.0 μm emission originating from Ho3 :5I7→5I8 transition in Ho3 /Tm3 -codoped gallate-bismuth-germanium-lead glasses were investigated upon excitation with 808 nm laser diode (LD). Energy transfer (ET) process between Tm3 : 3F4 level and Ho3 : 5I7 level was also discussed. It was noted that the measured peak wavelength and stimulated emission cross-section of Ho3 -doped bis-muth-germanium-lead glasses were ~2.02 μm and 5.1×10–21 cm2, respectively. Intense emission of Ho3 in Tm3 /Ho3 -codoped GBPG glass were observed, which resulted from the ET between Tm3 : 3F4 and Ho3 : 5I7 level upon excitation with 808 nm LD.  相似文献   

7.
The (60 - x)Bi2O3 - xGeO2-30B2O3-10ZnO (x = 5, 10, 20, 30 molar percent) glasses doped with Er^3+ and Er^3+/Yb^3+ were fabricated using the melting method. The thermal stability of the glasses was studied with their DTA curves. The results show that the difference between the glass transition temperature and the crystallization onset temperature increases with the increase of GeO2 content, indicating that the thermal stability of the glass has become better. The absorption spectra were recorded and the stimulated emission cross sections were calculated using the McCumber theory. The Ω2, O4, and Ω6 parameters,the transition probability, the radiative lifetime, and the fluorescence branch ratio of Er^3+ for optical transition were calculated from their absorption spectra in terms of reduced matrix U^(t)(λ = 2, 4, 6) character for optical transitions. The infrared emission of Er^3+ was measured upon excitation with 970 nm light and the full width at half-maximum (FWHM) was estimated from the emission spectra. The pumping efficiency and the intensity of the emission at the 1.54 μm band of Er^3+ were enhanced considerably by co-doping Yb^3+ .  相似文献   

8.
A series of fluorotellurite glasses based on(81–x)Te O2-(10+x)KF-9La2O3(TKL), where x=0 mol.%, 5 mol.%, 10 mol.%, 15 mol.%, doped with 2000 ppm Tm2O3, were prepared by the conventional melt quenching method.The influence of KF content on the thermal stability and optical spectroscopic properties of the Tm3+ doped fluorotellurite glasses were investigated by differential scanning calorimetry(DSC), X-ray diffraction(XRD), density measurement, Fourier transform infrared spectroscopy(FTIR), UV-VIS-NIR optical spectroscopy and fluorescence spectroscopy.Judd-Ofelt intensity parameters of Tm3+ in as-prepared glasses were determined and used to calculate the spontaneous emission probabilities and the radiative lifetime for the 4f-4f transitions of the Tm3+ ions.Stimulated emission cross sections in the 1470 nm region(σse) were evaluated by Füchtbauer-Ladenburg formula.The results showed that KF substitution of Te O2 was beneficial to improving the thermal stability, decreasing glass density and reducing the content of OH related groups for the investigated fluorotellurite glasses.The glass with composition of 66 Te O2-25KF-9La2O3(named TKL25) had the longest radiative lifetime of the 3H4(361 μs) and the largest FWHM×σse value(420.07×10–28 cm3), which made it a promising material for S-band fiber amplifiers.  相似文献   

9.
Optical absorption and fluorescence spectra of Sm3+-doped zincfluorophosphate glasses with molar composition of 44P2O5+17K20+9Al2O3+(30-χ)ZnF2+χSm2O3 (χ=0.01 mol.%, 0.05 mol.%, 0.1 mol.%, 0.5 mol.%, 1.0 mol.%, 2.0 and 3.0 mol.%) referred as PKAZFSm were prepared by melt quenching technique and were characterized through Raman, absorption, emission and decay curve analysis. From the absorption spectra, Judd-Ofelt intensity parameters were determined and were used to predict radiative properties such as transition probabilities (AR, radiative lifetimes (τR), branching ratios (βR), effective bandwidths (△λeff) and stimulated emission cross-section (σ(λp)) for the excited 4G5/2 luminescent level. The decay curve for the 4G5/2 level was single exponential for lower concentration and became non-exponential for higher concentrations. The non-exponential nature of the decay curves of the 4G5/2 level increased with increase in Sm3+ ions concentration accompanied by decrease in lifetime due to energy transfer processes among the Sm3+ ions. The non-exponential decay curves was well fitted to the generalized Inokuti-Hirayama model for S=6, indicating that the energy transfer among optically active ions was of dipole-dipole interaction. The cross-relaxation mechanism responsible for the quenching of lifetimes and the effect of variation of concentration on the spectroscopic properties were also discussed.  相似文献   

10.
Er3 -doped Gd2 O3 -SiO2 -B2 O3 -Na2O glasses were prepared, and formation range of glass of Gd2 O3 -SiO2 -B2O3 system was experimentally obtained. It is found that the glass phase can be formed only when the content of SiO2 is 0~50%(molar fraction), Gd2O3 is 0~30%(molar fraction) and B2 O3 is above 20%(molar fraction) in this glass system. The glass can also be obtained but becomes translucent at the contents of 60%(molar fraction) SiO2 and 30% Gd2O3 , or at the contents of 60%(molar fraction) SiO2 and 30%(molar fraction) B2O3. There is no glass phase formed in other glass components. Glass forming ability for Gd2O3 content of 10%, was characterized by the value of β, the parameter of crystallization tendency, which is 0.32~1.76, obtained from the differential thermal analysis. The absorption and emission cross section, the J-O parameters Ωt(2,4,6) and radiative transition probabilities were calculated by using the theory of McCumber and Judd-Ofelt. The emission properties at 1.5 μm of the samples are discussed with the product of full width at half maximum and stimulated emission cross section. It can be seen that the value of the FWHM×σepeak product in the prepared glass is more than those of germanate, silicate and phosphate glasses. Furthermore, the maximum value of the product among these glasses reported in this work is close to that of oxyfluoride silicate glass. Therefore, the Er3 -doped gadolinium borosilicate glass in this paper is a candidate for broadband erbium doped fiber amplifiers.  相似文献   

11.
Sintering of Ce(0.8)Sm(0.2)O(1.9)   总被引:1,自引:0,他引:1  
Ce0.8Sm0.2O1.9(SDC)powder was prepared with an oxalate coprecipitation route.SDC solid solutions were sintered at various temperatures ranging from 1100~1450 ℃,and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),density measurements,and electrical conductivity measurements.The optimized processing parameters for densification were to uniaxially press the sample at 200~400 MPa and sinter it at 1350~1400 ℃ for 4 h.The density of the sintered pellets was 〉90% of the theoretical density;their soakage was 〈0.5%;and the average grain size was 1~2 μm.The conductivities of the typical sintered specimen were 0.0133 and 0.0211 S·cm-1 at 550 and 600 ℃,respectively;Its activation energy for ionic conductivity was 0.62 eV.The dense SDC bulk material could be used as the electrolyte layer of low temperature solid oxide fuel cells.  相似文献   

12.
PAMAM/lanthanide (Ⅲ) nanocomposite was studied by molecular simulation method. Molecular simulation enabled study of the lanthanide tetrad effect at atomic level. However, PAMAM dendrimer exhibiting unique properties such as nanometer size and highly functionalized terminal surface provided a novel space for lanthanide (Ⅲ) to show their peculiar tetrad effect. The results showed that total energies of PAMAM/lanthanide(Ⅲ) nanocomposites presented obvious tetrad effect and special double-double effect. Nd, Gd, and Er fell to the lower point and Gd fell to the lowest point in the TE-Ln curve with four groups. In order to explain the tetrad effect, kinetic energy (KE) and potential energy (PE) were analyzed. The KE curve consisted of three W-type parts (La - Pm, Pm - Tb, Tb - Tm, and the latter two W-type part were axial symmetry) and an exception part (Yb - Lu). It also showed that the KE of odd atomic number was higher than the even one's with exception of Yb and Lu. Furthermore, decomposed potential energies gave out the atomic-level subtle difference of lanthanide which present more regulations for Eu(Ⅲ) - Lu(Ⅲ) compared with La(Ⅲ) - Sm(Ⅲ). And also Ho-valley and three platforms (Sm - Eu, Td - Dy, Er - Tm) were discovered that refect the regular change of nanocomposite structures. Additionally, there are distinct correlations between Ebond and EInversion, EAngle and EVDW, Eworsion and ECoul, respectively. Therefore, PAMAM could be used in separation of lanthanide by changing conditions.  相似文献   

13.
We investigated the thermal stability and spectroscopic properties of the 1.53 μm emission from 4I13/24I15/2 transition of Er3+ ions in Er3+/Yb3+-codoped Ga-Bi-Pb-Ge heavy metal oxide glass for use in broadband fiber amplifiers. It was noted that the addition of GeO2 effectively enhanced the thermal stability of the heavy metal oxide glass studied. The emission peak located at approximately 1530 nm with a full width at half-maximum of approximately 58 nm. The measured lifetime and the calculated emission cross-section of this transition were 3.2 ms and 10.3×10−21 cm2, respectively. As a result, Ga-Bi-Pb-Ge heavy metal oxide glasses were assumed to be potential host material for the 1.53 μm broadband optical fiber amplifiers.  相似文献   

14.
The growth of LiNbO3 single crystal with Er3+ and Zn2+ co-doped using Bridgman method and its characteristic absorption spectra and fluorescence spectra were reported. Large-size crystals initially containing Zn2+ (3%) and Er3+ (0.6%) with good optical quality were obtained using optimized conditions such as a growth rate of 0.8 1.5 mm·h−1 and a temperature gradient of about 30 35 °C · cm−1 across the solid-liquid interface and the sealed platinum crucible. X-ray diffraction and differential thermal analysis (DTA) were used to characterize the crystals. The results indicate that the concentration of Er3+ ions in crystals, their absorption intensity, and their fluorescence intensity decrease from the bottom to the top in the crystals. However, for the upper part of the crystal, the up-conversion fluorescence intensity is higher than that of the lower part excited by an 800 or 970 nm pump. The effects of the crystal lattice, their structural defect and their effective segregation of Er3+ ions were discussed with respect to the variations of the up-conversion fluorescence intensity.  相似文献   

15.
The influence of heavy samarion (Sm) doping (0.40≤x≤0.60) on magnetic and electric properties of La0.67-xSmxSr0.33MnO3 was investigated by measuring the magnetization-temperature (M - T) curves, magnetization-magnetic density ( M - H) curves, resistivity-temperature (ρ- T) curves and magnetoresistivity-temperature ( MR - T) curves of the samples under different temperatures. It is found that, form from long-range ferromagnetic order to spin-cluster glass with the increase of Sm doping amount, the samples transstate and anti-ferromagnetic state; and when x = 0.60, the transport property becomes abnormal under magnetic background; and the magnetic structure changes and extra magnetic coupling induced by doping leads to colossal magnetoresistance effect. The transport mechanism of metallic conduction at low temperature is mainly electron-magneton interaction and can be fitted by the formula ρ = ρ0 + AT^4.5, and the insulatorlike transport mechanism on high temperature range is mainly the function of variable-range hopping and can be fitted by the formula ρ = ρ0exp(T0/T)^1/4. In the formulas above, p is resistivity, T is temperature, and A, ρ0, T0 are constants.  相似文献   

16.
Samples with nominal composition of (1 - x)La0.67Ca0.33MnO3 (LCMO)/xCuO (x = 0%, 2%, 4% and 20% ) were made using a special experimental method. The temperature dependence of the resistivity (ρ) of the composites was investigated in the temperature range of 10 - 300 K and different magnetic fields of H = 0, 0.1, 0.3, 0.5, 1.0 and 3.0 T. The results showed that CuO percentage x had important effects on metal-insulator transition temperature (Tp), zero field peak resistivity (ρmax), and magnetoresistance (MR) properties of the composites. Tp shifted sharply towards low temperature with the increase of x in the range of x ≤4%, but was almost independent of x at high level of CuO content. Composites with x = 4 % and 20 % exhibited similar electrical transmission behavior. Compared with pure LCMO, enhanced magnetoresistance could be clearly observed even in a quite low magnetic field of 0.3 T. For x =4% and 20% samples, the MR value at 0.3 T could reach as high as - 88% and - 90%, respectively. XRD and SEM analysis showed that the substantial enhancement of MR, especially near Tp, was because of local spin disorder between contiguous LCMO ferromagnetic particles caused by the addition of CuO.  相似文献   

17.
A series of W-type ferrites with the composition ofBal-xLaxCo2Fe16O27(where, x =0.0, 0.05, 0.10, 0.15, 0.20 and 0.25) were prepared by solid-state reaction method. The structure transformations of the ferrites were examined by XRD, DTA-TG and XPS, and the microwave-absorbing properties were investigated by evaluating the permeability and permittivity of materials(μτ,ετ, ). The results showed that the phase-transition temperature increased with the addition of La^3+ content, and a single-phase was formed at 1250℃ at last. Microwave properties were obviously improved as a result of the substitution of La^3+ for Ba^2+ at the frequency range of 0.5 - 18.0 GHz.  相似文献   

18.
Ceriumis one of the cheapest[1]and most abun-dant rare earths (RE) .However ,high purityis usual-ly required for its utilization in industry , where it isusedfor sulfur control insteels ,pyrophoric alloys ,ce-ramic ,catalyst support ,polishing powders ,etc .In its minerals ,as well as in the spent nuclearfuel ,ceriumis accompanied by other RE.They basi-cally exist in solution as stable RE(Ⅲ) species ,which makes their mutual separation rather difficult .In contrast to other RE, Ce(Ⅲ) can…  相似文献   

19.
Gd3Sc2Ga3O12 polycrystalline material for single crystal growth was prepared with Ga, Gd2O3 and Sc2O3 as starting materials and aqueous ammonia as the precipitator by co-precipitation method. The precursors sintered at various temperatures were characterized by infrared spectra (IR), X-ray diffractometry (XRD) and transmitted electron microscopy (TEM). The results showed that pure GSGG phase could be obtained at 900 ℃. The sintered powders were well-dispersed and less-aggregated in the sintered temperature range of 900 - 1000 ℃. XRD and TEM show that the polycrystalline particle sizes of the polycrystalline powders were about 20 - 50 nm. Compared with the method that Ga2O3, Gd2O3 and Sc2O3 were mixed directly and sintered to get polycrystalline materials, the synthesized temperature was lower and sintered time was shorter. Thus co-precipitation was a good method to synthesize GSGG polycrystalline material.  相似文献   

20.
The 2.0 μm emission originating from Ho^3+:^5I7→^5I8 were investigated upon excitation with 808 nm laser diode (LD) transition in Ho^3+/Tm^3+-codoped gallate-bismuth-germanium-lead glasses Energy transfer (ET) process between Tm^3+: ^3F4 level and Ho^3+: ^5I7 level was also discussed. It was noted that the measured peak wavelength and stimulated emission cross-section of Ho^3+-doped bismuth-germanium-lead glasses were -2.02 μm and 5.1×10^-21 cm^2, respectively. Intense emission of Ho^3+ in Tm^3+/Ho^3+-codoped GBPG glass were observed, which resulted from the ET between Tm^3+: ^3F4 and Ho^3+: ^5I7 level upon excitation with 808 nm LD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号