首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
陈莉  戴荣彩  陈家梅  夏福利 《农药》2006,45(3):186-188
为评价除草剂四唑嘧磺隆在水稻上使用后的残留动态及环境安全性,在北京海淀区进行了50%四唑嘧磺隆水分散粒剂在水稻上的残留动态和最终残留试验研究。样品经丙酮提取抽滤后,再经液液分配及氧化铝柱净化、浓缩、定容后,用紫外检测器的液相色谱进行测定。其有效成分四唑嘧磺隆的最低检出量为0.02ng,在稻田水、土壤、鲜植株、稻壳、糙米样品中的平均回收率为82.4%-105.0%,变异系数为1.1%~14.1%,符合农药残留分析的要求。结果表明:四唑嘧磺隆在水稻植株上的半衰期为2.4d,在土壤巾的半衰期为5.5d,在稻田水中的半衰期为1.9d,施药后7d四唑嘧磺隆在水稻植株上的消解达到80%以上。50%四唑嘧磺隆水分散粒剂按80、120g/hm。使用,施药1次,收获时,四唑嘧磺降在糙米、稻壳、稻草、土壤中的残留量均未检出。  相似文献   

2.
优化并建立了咪鲜胺及其最终代谢产物2,4,6-三氯苯酚在麦粒、植株和土壤中的残留分析方法,并于2013—2014年研究了咪鲜胺在小麦植株和土壤中的残留消解动态,对收获的麦粒进行了安全性分析和评估。结果显示:当40%戊唑·咪鲜胺悬浮剂有效成分用量为210~315 g/hm2时,咪鲜胺在植株、土壤中的消解较快,半衰期分别为2.45~8.76 d、2.83~8.76 d。采收间隔期为14 d时,麦粒中咪鲜胺及其代谢物的最终残留量小于0.05 mg/kg,但不同收获期的小麦对人体具有不同的膳食安全风险。  相似文献   

3.
采用(GC-ECD测定了咪鲜胺在田水、土壤和水稻植株样品中的消解动态。土壤、水稻植株样品用丙酮提取,提取液经衍生净化、GC-ECD检测。当咪鲜胺在土壤、田水和植株中的添加浓度为0.05~5.0 mg/kg时,其回收率为83.1%~98.7%之间,RSD为2.6%~6.1%;咪鲜胺的LOD为2.0×10~(-11) g,在田水、土壤、水稻植株中的LOQ为0.05 mg/kg。消解动态试验结果显示,咪鲜胺在植株、土壤以及田水中的消解动态规律符合一级动力学方程,半衰期为3.5~9.5 d。  相似文献   

4.
[目的]通过2年3地的水稻田间试验,研究了50%噻虫胺水分散粒剂在水稻和土壤中的残留及消解动态。[方法]利用QuEChERS-HPLC-MS/MS法。[结果]噻虫胺在水稻植株、土壤、田水中的消解动态符合一级反应动力学方程。2016年安徽植株、田水、土壤中半衰期分别为7.5、5.6、6.5d;辽宁分别为8.7、3.4、8.1d;浙江分别为5.3、7.8、13.3d;2017年安徽植株、田水、土壤中半衰期分别为6.5、4.3、23.9d;辽宁分别为5.5、5.4、11.7d、浙江分别为9.0、7.7、27.7d。当50%噻虫胺水分散粒剂以120、180ga.i./hm2 2个剂量分别施药2~3次,施药间隔30d时,噻虫胺在水稻植株、糙米、土壤中的最终残留量小于0.07mg/kg。[结论]噻虫胺属于易降解农药,在糙米的最终残留量小于我国制定的噻虫胺在糙米中的最大残留限量0.2mg/kg。  相似文献   

5.
40%氯噻啉水分散粒剂在稻田环境中的残留动态   总被引:1,自引:0,他引:1  
为了评价40%氯噻啉水分散粒剂在稻田环境中的残留动态和环境安全性,2007年和2008年在北京和山东济南郊区进行了氯噻啉在水稻上的残留试验.两年两地的消解动态试验结果显示:氯噻啉在稻田环境中的消解均符合一级动力学方程.氯噻啉在北京稻田水、土壤及水稻植株中的半衰期分别为2.35、7.87、7.83 d,氯噻啉在山东济南的稻田水、土壤及水稻植株中的半衰期分别为2.37、9.24、7.58 d;最终残留结果显示:在推荐使用剂量下,收获的稻谷中氯噻啉的残留量均低于最大允许残留限量(MRL)0.5 mg/kg,收获的稻谷食用是安全的.  相似文献   

6.
《农药》2016,(11)
[目的]为评价二嗪磷在水稻上使用后的残留行为及环境安全性,在浙江宁波进行了50%二嗪磷水乳剂在水稻上的田间试验。[方法]建立了液相色谱串联质谱检测稻田水、土壤、水稻植株和糙米中二嗪磷残留方法。[结果]二嗪磷在稻田水、土壤及水稻植株中的平均消解半衰期分别为2.5、8.7、9.9 d。按照750、1125 g a.i./hm~2的剂量,施药2次和3次,末次施药后10、20、30 d,二嗪磷在糙米中最终残留量低于国家残留限量(0.1 mg/kg)。[结论]50%二嗪磷水乳剂剂型环保、使用安全,适合在水稻上应用。  相似文献   

7.
为了评价唑草酮在水稻上使用后的残留动态,在天津、南京两地同时进行了唑草酮在水稻上的残留动态试验.结果表明:唑草酮在水稻植株上的半衰期为5.2~5.7 d,在土壤中的半衰期为1.3~2.3 d,在稻田水中的半衰期为0.8~1.4 d;收获的水稻糙米中唑草酮的残留量均未检出.唑草酮在糙米中最高残留限量(MRL值)推荐值为0.05 mg/kg.  相似文献   

8.
[方法]在长沙和贵阳两地进行田间试验,采用高效液相色谱技术定量分析50%烯啶虫胺可溶粉剂在水稻环境中的残留与消解动态,为水稻中烯啶虫胺的安全使用提供科学依据.[结果]烯啶虫胺在稻田水、土壤和植株中的半衰期分别为1.84~2.00、2.15~2.78、4.78~4.95 d.[结论]在推荐使用剂量和最高使用剂量条件下,收获的糙米中烯啶虫胺的残留量均未检出.  相似文献   

9.
《农药》2016,(10)
[目的]评价呋虫胺在水稻田中的安全性,对呋虫胺及其代谢物在水稻植株、土壤、田水中的消解动态和糙米、稻壳、植株、土壤中最终残留水平进行研究。[方法]样品用甲醇和乙腈混合溶液提取,提取液经SPE小柱净化,UPLC-MS/MS检测。[结果]呋虫胺及其代谢物DN、UF在糙米、稻壳、水稻植株、稻田土壤、稻田水中的平均回收率在75.7%~99.5%之间、相对标准偏差在1.18%~7.11%之间;呋虫胺最小检出量为1×10~(-13) g,呋虫胺代谢物DN、UF最小检出量为5×10~(-13) g,在糙米、稻壳、水稻植株、稻田土壤、稻田水中的最低检测质量分数分别为0.05、0.05、0.05、0.05、0.005 mg/kg,实现了对呋虫胺及其代谢物DN、UF同时测定。呋虫胺在植株和田水中的降解半衰期分别为4.3、2.4 d,在糙米中的残留量均低于CAC、欧盟和日本规定的最大残留限量(中国尚未规定呋虫胺在糙米中的最大残留限量值)。[结论]该方法简单可靠,符合农药残留分析要求,可用于糙米、稻壳、水稻植株、稻田土壤、田水中呋虫胺及其代谢物的残留检测。  相似文献   

10.
啶虫脒在水稻和稻田水土中的残留及消解动态   总被引:2,自引:0,他引:2  
应用气相色谱(电子捕获检测器–ECD)测定,研究了25%啶虫脒水分散粒剂在水稻和稻田水土中的残留消解动态。结果表明,啶虫脒在植株中消解半衰期为2.42~3.11d,在稻田水中为1.13~1.81d,在土壤中为2.39~2.75d。有效成分用量36g/hm2,施药2次,距最后一次施药14d收获糙米中啶虫脒的残留量小于0.2mg/kg。建议25%啶虫脒水分散粒剂在水稻上防治最多使用2次,用量为36g/hm2,安全间隔期为14d。  相似文献   

11.
精-异丙甲草胺在大豆及土壤中的残留动态   总被引:1,自引:0,他引:1  
张玉婷  郭永泽  刘磊  邵辉  宋淑荣  李辉 《农药》2008,47(2):130-131,139
为了评价精-异丙甲草胺在大豆上的残留动态及环境安全性,在天津、吉林两地同时进行了精-异丙甲草胺在大豆上的残留动态试验.结果表明,天津地区精-异丙甲草胺在大豆植株中的半衰期为19.1 d,在土壤中的半衰期为27.9 d;吉林地区精-异丙甲草胺在大豆植株中的半衰期为21.4 d,在土壤中的半衰期为34.1 d.收获的大豆籽粒中精-异丙甲草胺最终残留量均为未检出.  相似文献   

12.
40%稻丰散水乳剂在水稻及稻田环境中的残留动态研究   总被引:1,自引:0,他引:1  
测定了稻丰散在水稻及稻田环境的残留动态情况。以丙酮、乙腈或二氯甲烷提取水稻、土壤及水样中的稻丰散残留,稻苗样品过SPE小柱净化,稻壳和糙米直接浓缩、定容,最后用GC-ECD(气相色谱仪带电子捕获检测器)测定。稻丰散在土壤、田水、稻杆(苗)、糙米和稻壳中的添加回收率为83.8%~117.2%。稻丰散在三地田水、土壤和稻苗中的消解半衰期分别为0.92~1.71 d、8.2~16.1 d和2.59~4.30 d。按推荐剂量的1.5倍施药3~4次,距最后一次施药间隔21 d后,稻杆中最终残留量≤0.019~2.05 mg/kg,稻壳中最终残留量≤0.234~4.19 mg/kg,糙米中最终残留量≤0.001~0.040 mg/kg。暂以稻丰散在糙米中的最高残留限量为0.05 mg/kg,糙米距采收期最后一次施药21 d是安全的,但稻壳慎用。  相似文献   

13.
10%吡虫啉在水稻中的残留动态研究   总被引:13,自引:5,他引:8  
采用高效液相色谱法测定了吡虫啉在水稻中的残留量。试验结果表明:吡虫啉在土壤、稻杆、糙米、米糠和田水中的添加回收率为71.66% ̄96.34%,变异系数为0.31% ̄11.44%。吡虫啉在稻杆、田水和土壤中的半衰期分别为1.2 ̄2.0d、1.1 ̄3.1d和5.6 ̄15.3d。糙米中吡虫啉的最终残留量均低于0.025mg/kg。  相似文献   

14.
运用高效液相色谱分析技术测定25%吡蚜酮·噻虫嗪悬浮剂在稻田水、土壤、植株和糙米中的消解动态和最终残留。吡蚜酮在稻田水、土壤和植株中的消解动态方程分别为c=0.134e-0.12t,C=1.377e-0.13t及C=0.741e-0.10t。噻虫嗪在稻田水、土壤和植株中的消解动态方程分别为C=0.114e-0.12t,C=1.118e-0.10t及C=0.626e-0.12t。最终残留结果显示,25%吡蚜酮·噻虫嚷悬浮剂施用剂量为0.0525~0.0788g/m2时,施药距水稻的安全收获间隔期为21d。  相似文献   

15.
异丙甲草胺在稻田环境中的降解与残留研究   总被引:1,自引:0,他引:1  
研究异丙甲草胺在水稻、土壤、田水中的残留分析方法及其消解动态和最终残留。样品以乙腈提取,净化后采用毛细管气相色谱法-电子捕获检测器进行测定。在0.005、0.05、1.00mg/kg3个添加水平,平均回收率为88.42%~101.25%,变异系数为1.49%~9.51%,符合农药残留分析的要求。运用上述方法,测定异丙甲草胺在稻田环境中的消解动态和最终残留。试验结果表明,异丙甲草胺在土壤和田水中消解较慢,在稻秆中消解则较快,在土壤、田水和稻秆的平均半衰期分别为42.63d、39.21d和17.42d;20%异丙甲草胺WP按有效成分用量950g/hm2,在直播水稻田水稻播种后施药1次,收获时异丙甲草胺在土壤、稻杆和稻谷中的残留量均低于0.05mg/kg。  相似文献   

16.
[目的]建立了敌稗在稻田环境中的残留检测方法.[方法]样品经乙腈提取,液液分配后,气相色谱-电子捕获(ECD)法测定.[结果]方法对敌稗在田水、土壤、植株、稻米和稻壳中的平均添加回收率为84.6%~105.5%,相对标准偏差1.0%~12.5%.敌稗在水稻田水、土壤、植株中的半衰期分别为0.9~2.9、0.7~2.0、1.0~1.3 d;在收获期土壤、植株、稻米、稻壳中敌稗的残留量均小于最低检测质量浓度.[结论]该方法操作简单、快速,灵敏度高,符合农药残留分析的技术要求.  相似文献   

17.
[方法]采用田间试验的方法,对己唑醇在苹果及土壤中的残留消解动态及最终残留量进行了研究.气相色谱电子捕获检测器进行定量分析.[结果]消解动态试验结果表明:己唑醇在土壤中的半衰期为7.1~14.4 d,在苹果中的半衰期为7.1~8.8 d;最终残留量试验结果表明:5%己唑醇悬浮剂按施药剂量为50、75 mg a.i./kg,连续喷药3~4次,施药间隔期7d,喷药后21 d土壤中已唑醇残留量<0.01~0.215 mg/kg,苹果中已唑醇残留量为0.011~0.055 mg/kg,均低于0.1 mg/kg(MRL).[结论]推荐5%已唑醇悬浮剂在苹果上使用安全间隔期为21 d.  相似文献   

18.
西玛津在甘蔗及土壤中的残留消解动态   总被引:1,自引:0,他引:1  
为了探明西玛津使用后在甘蔗及其土壤中的残留降解规律,采用气相色谱法研究了西玛津90%水分散粒剂在甘蔗及其土壤中的残留消解降解动态和最终残留实验。结果表明:西玛津在甘蔗和土壤中的降解动态方程分别为Ct=19.157e-0.0587t和Ct=1.689 8e-0.036t,半衰期分别为11.8 d和19.3 d;以1 647 g a.i./hm2和2 470.5 g a.i./hm2的剂量在甘蔗田进行喷雾处理,收获期甘蔗和土壤中的最终残留量分别小于0.01 mg/kg和0.02 mg/kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号