首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
To fabricate flexible electrodes, conventional silver (Ag) nanomaterials have been deposited onto flexible substrates, but the formed electrodes display limited electrical conductivity due to residual bulky organic ligands, and thus postsintering processes are required to improve the electrical conductivity. Herein, an entirely different approach is introduced to produce highly flexible electrodes with bulk metal–like electrical conductivity: the room‐temperature metallic fusion of multilayered silver nanoparticles (NPs). Synthesized tetraoctylammonium thiosulfate (TOAS)‐stabilized Ag NPs are deposited onto flexible substrates by layer‐by‐layer assembly involving a perfect ligand‐exchange reaction between bulky TOAS ligands and small tris(2‐aminoethyl)amine linkers. The introduced small linkers substantially reduce the separation distance between neighboring Ag NPs. This shortened interparticle distance, combined with the low cohesive energy of Ag NPs, strongly induces metallic fusion between the close‐packed Ag NPs at room temperature without additional treatments, resulting in a high electrical conductivity of ≈1.60 × 105 S cm?1 (bulk Ag: ≈6.30 × 105 S cm?1). Furthermore, depositing the TOAS–Ag NPs onto cellulose papers through this approach can convert the insulating substrates into highly flexible and conductive papers that can be used as 3D current collectors for energy‐storage devices.  相似文献   

2.
MXenes (Ti3C2) are 2D transition‐metal carbides and carbonitrides with high conductivity and optical transparency. However, transparent MXene electrodes suitable for polymer light‐emitting diodes (PLEDs) have rarely been demonstrated. With the discovery of the excellent electrical stability of MXene under an alternating current (AC), herein, PLEDs that employ MXene electrodes and exhibit high performance under AC operation (AC MXene PLEDs) are presented. The PLED exhibits a turn‐on voltage, current efficiency, and brightness of 2.1 V, 7 cd A?1, and 12 547 cd m?2, respectively, when operated under AC with a frequency of 1 kHz. The results indicate that the undesirable electric breakdown associated with heat arising from the poor interface of the MXene with a hole transport layer in the direct‐current mode is efficiently suppressed by the transient injection of carriers accompanied by the alternating change of the electric polarity under the AC, giving rise to reliable light emission with a high efficiency. The solution‐processable MXene electrode can be readily fabricated on a flexible polymer substrate, allowing for the development of a mechanically flexible AC MXene PLED with a higher performance than flexible PLEDs employing solution‐processed nanomaterial‐based electrodes such as carbon nanotubes, reduced graphene oxide, and Ag nanowires.  相似文献   

3.
Although multifunctional, flexible, and wearable textiles with integrated smart electronics have attracted tremendous attention in recent years, it is still an issue to balance new functionalities with the inherent performances of the textile substrates. 2D early transition metal carbides/nitrides (MXenes) are considered as ideal nanosheets for fabricating multifunctional and flexible textiles on the basis of their superb intrinsic electrical conductivity, tunable surface chemistry, and layered structure. Herein, highly conductive and hydrophobic textiles with exceptional electromagnetic interference (EMI) shielding efficiency and excellent Joule heating performance are fabricated by depositing in situ polymerized polypyrrole (PPy) modified MXene sheets onto poly(ethylene terephthalate) textiles followed by a silicone coating. The resultant multifunctional textile exhibits high electrical conductivity of ≈1000 S m?1 in conjunction with an exceptional EMI shielding efficiency of ≈90 dB at a thickness of 1.3 mm. The thin silicone coating renders the hydrophilic PPy/MXene‐decorated textile hydrophobic, leading to an excellent water‐resistant feature while retaining a satisfactory air permeability of the textile. Interestingly, the multifunctional textile also exhibits an excellent moderate voltage‐driven Joule heating performance. Thus, the deposition of PPy‐modified MXene followed by silicone coating creates a multifunctional textile that holds great promise for wearable intelligent garments, EMI shielding, and personal heating applications.  相似文献   

4.
Graphene‐based organic nanocomposites have ascended as promising candidates for thermoelectric energy conversion. In order to adopt existing scalable printing methods for developing thermostable graphene‐based thermoelectric devices, optimization of both the material ink and the thermoelectric properties of the resulting films are required. Here, inkjet‐printed large‐area flexible graphene thin films with outstanding thermoelectric properties are reported. The thermal and electronic transport properties of the films reveal the so‐called phonon‐glass electron‐crystal character (i.e., electrical transport behavior akin to that of few‐layer graphene flakes with quenched thermal transport arising from the disordered nanoporous structure). As a result, the all‐graphene films show a room‐temperature thermoelectric power factor of 18.7 µW m?1 K?2, representing over a threefold improvement to previous solution‐processed all‐graphene structures. The demonstration of inkjet‐printed thermoelectric devices underscores the potential for future flexible, scalable, and low‐cost thermoelectric applications, such as harvesting energy from body heat in wearable applications.  相似文献   

5.
Developing scalable methods to produce large quantities of high‐quality and solution‐processable graphene is essential to bridge the gap between laboratory study and commercial applications. Here an efficient electrochemical dual‐electrode exfoliation approach is developed, which combines simultaneous anodic and cathodic exfoliation of graphite. Newly designed sandwich‐structured graphite electrodes which are wrapped in a confined space with porous metal mesh serve as both electrodes, enabling a sufficient ionic intercalation. Mechanism studies reveal that the combination of electrochemical intercalation with subsequent thermal decomposition results in drastic expansion of graphite toward high‐efficiency production of graphene with high quality. By precisely controlling the intercalation chemistry, the two‐step approach leads to graphene with outstanding yields (85% and 48% for cathode and anode, respectively) comprising few‐layer graphene (1–3 layers, >70%), ultralow defects (ID/IG < 0.08), and high production rate (exceeding 25 g h?1). Moreover, its excellent electrical conductivity (>3 × 104 S m?1) and great solution dispersibility in N‐methyl pyrrolidone (10 mg mL?1) enable the fabrication of highly conductive (11 Ω sq?1) and flexible graphene films by inkjet printing. This simple and efficient exfoliation approach will facilitate the development of large‐scale production of high‐quality graphene and holds great promise for its wide application.  相似文献   

6.
Micro‐supercapacitors (MSCs), albeit powerful, are unable to broaden their potential applications primarily because they are not as flexible and morphable as electronics. To address this problem, a universal strategy to fabricate substrate‐free, ultrathin, shapeless planar‐MSCs with high‐performance tenability under serious deformation is put forward. These represent a new class of “all‐inside‐one” film supercapacitors, achieved by encapsulating two‐dimensional interdigital microelectrodes within chemically cross‐linked polyvinyl‐alcohol‐based hydrogel electrolyte containing graphene oxide (GO). GO nanosheets significantly improve ionic conductivity, enhance the capacitance, and boost robustness of hydrogel electrolyte. Consequently, the entire MSC, while being only 37 µm thick, can be crumpled and its shape can self‐adjust through fluid channel ten times smaller than its original size without any damage, demonstrating shapelessness. Using MXene as active material, high single‐cell areal capacitance of 40.8 mF cm?2 is achieved from microelectrodes as thin as 5 µm. Furthermore, to demonstrate wide applicability of this protocol, screen‐printed graphene‐based highly integrated MSCs connecting nine cells in series are fabricated to stably output a high voltage of 7.2 V while crumpling them from 0.11 to 0.01 cm?3, manifesting superior performance uniformity. This protocol allows the coexistence of high performance with incredible flexibility that may greatly diversify MSCs' applications.  相似文献   

7.
Bioelectronic interfaces require electrodes that are mechanically flexible and chemically inert. Flexibility allows pristine electrode contact to skin and tissue, and chemical inertness prevents electrodes from reacting with biological fluids and living tissues. Therefore, flexible gold electrodes are ideal for bioimpedance and biopotential measurements such as bioimpedance tomography, electrocardiography (ECG), electroencephalography (EEG), and electromyography (EMG). However, a manufacturing process to fabricate gold electrode arrays on plastic substrates is still elusive. In this work, a fabrication and low‐temperature sintering (≈200 °C) technique is demonstrated to fabricate gold electrodes. At low‐temperature sintering conditions, lines of different widths demonstrate different sintering speeds. Therefore, the sintering condition is targeted toward the widest feature in the design layout. Manufactured electrodes show minimum feature size of 62 μm and conductivity values of 5 × 10 6 S m?1. Utilizing the versatility of printing and plastic electronic processes, electrode arrays consisting of 31 electrodes with electrode‐to‐electrode spacing ranging from 2 to 7 mm are fabricated and used for impedance mapping of conformal surfaces at 15 kHz. Overall, the fabrication process of an inkjet‐printed gold electrode array that is electrically reproducible, mechanically robust, and promising for bioimpedance and biopotential measurements is demonstrated.  相似文献   

8.
Novel nacre‐mimic bio‐nanocomposites, such as graphene‐based laminates, are pushing the boundaries of strength and toughness as flexible engineering materials. Translating these material advances to functional flexible electronics requires methods for generating print‐scalable microcircuits (conductive elements surrounded by dielectric) into these strong, tough, lightweight bio‐nanocomposites. Here, a new paradigm for printing flexible electronics by employing facile, eco‐friendly seriography to confine the reduction of graphene oxide biopapers reinforced by silk interlayers is presented. Well‐defined, micropatterned regions on the biopaper are chemically reduced, generating a 106 increase in conductivity (up to 104 S m?1). Flexible, robust graphene‐silk circuits are showcased in diverse applications such as resistive moisture sensors and capacitive proximity sensors. Unlike conductive (i.e., graphene‐ or Ag nanoparticle‐loaded) inks printed onto substrates, seriography‐guided reduction does not create mechanically weak interfaces between dissimilar materials and does not require the judicious formation of ink. The unimpaired functionality of printed‐in graphene‐silk microcircuits after thousands of punitive folding cycles and chemical attack by harsh solvents is demonstrated. This novel approach provides a low‐cost, portable solution for printing micrometer‐scale conductive features uniformly across large areas (>hundreds of cm2) in layered composites for applications including wearable health monitors, electronic skin, rollable antennas, and conformable displays.  相似文献   

9.
A facile one‐step printing process by 3D micro‐extrusion affording binder‐free thermally reduced graphene oxide (TRGO) based electrochemical capacitors (ECs) that display high‐rate performance is presented. Key intermediates are binder‐free TRGO dispersion printing inks with concentrations up to 15 g L?1. This versatile printing technique enables easy fabrication of EC electrodes, useful in both aqueous and non‐aqueous electrolyte systems. The as‐prepared TRGO material with high specific surface area (SSA) of 593 m2 g?1 and good electrical conductivity of ≈16 S cm?1 exhibits impressive charge storage performances. At 100 and 120 Hz, ECs fabricated with TRGO show time constants of 2.5 ms and 2.3 ms respectively. Very high capacitance values are derived at both frequencies ranging from 3.55 mF cm?2 to 1.76 mF cm?2. Additionally, these TRGO electrodes can be charged and discharged at very high voltage scan rates up to 15 V s?1 yielding 4 F cm?3 with 50% capacitance retention. Electrochemical performance of TRGO electrodes in electrolyte containing tetraethyl ammonium tetrafluoroborate and acetonitrile (TEABF4‐ACN) yields high energy density of 4.43 mWh cm?3 and power density up to 42.74 kW cm?3, which is very promising for AC line filtering application and could potentially substitute state of the art electrolytic capacitor technology.  相似文献   

10.
The simple synthesis of ultralow‐density (≈2.32 mg cm?3) 3D reduced graphene oxide (rGO) aerogels that exhibit high electrical conductivity and excellent compressibility are described herein. Aerogels are synthesized using a combined hydrothermal and thermal annealing method in which hexamethylenetetramine is employed as a reducer, nitrogen source, and graphene dispersion stabilizer. The N‐binding configurations of rGO aerogels increase dramatically, as evidenced by the change in pyridinic‐N/quaternary‐N ratio. The conductivity of this graphene aerogel is ≈11.74 S m?1 at zero strain, whereas the conductivity at a compressive strain of ≈80% is ≈704.23 S m?1, which is the largest electrical conductivity reported so far in any 3D sponge‐like low‐density carbon material. In addition, the aerogel has excellent hydrophobicity (with a water contact angle of 137.4°) as well as selective absorption for organic solvents and oils. The compressive modulus (94.5 kPa; ρ ≈ 2.32 mg cm?3) of the rGO aerogel is higher than that of other carbon‐based aerogels. The physical and chemical properties (such as high conductivity, elasticity, high surface area, open pore structure, and chemical stability) of the aerogel suggest that it is a viable candidate for the use in energy storage, electrodes for fuel cells, photocatalysis, environmental protection, energy absorption, and sensing applications.  相似文献   

11.
With developments in technology, tremendous effort has been devoted to produce flexible, scalable, and high‐performance supercapacitor electrode materials. This report presents a novel fabrication method of highly flexible and scalable electrode material for high‐performance supercapacitors using solution‐processed polyaniline (PANI)/reduced graphene oxide (RGO) hybrid film. SEM, TEM, Raman, and XPS analyses show that the PANI/RGO film is successfully synthesized. The percentages of the PANI component in the film are controlled (88, 76, and 60%), and the maximum electrical conductivity (906 S cm?1) is observed at the PANI percentage of 76%. Notably, electrical conductivity of the PANI/RGO film (906 S cm?1) is larger than both PANI (580 S cm?1) and RGO (46.5 S cm?1) components. XRD analysis demonstrates that the strong π–π interaction between the RGO and the PANI cause more compact packing of the PANI chains by inducing more fully expanded conformation of the PANI chains in the solution, leading to increase in the electrical conductivity and crystallinity of the film. The PANI/RGO film also displays diverse advantages as a scalable and flexible electrode material (e.g., controllable size and great flexibility). During the electrochemical tests, the film exhibits high capacitance of 431 F g?1 with enhanced cycling stability.  相似文献   

12.
A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self‐assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in‐between MXene layers. As a result, the self‐restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO‐5 wt% electrode displays a volumetric capacitance of 1040 F cm?3 at a scan rate of 2 mV s?1 , an impressive rate capability with 61% capacitance retention at 1 V s?1 and long cycle life. Moreover, the fabricated binder‐free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L?1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. This work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next‐generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.  相似文献   

13.
Additive patterning of transparent conducting metal oxides at low temperatures is a critical step in realizing low‐cost transparent electronics for display technology and photovoltaics. In this work, inkjet‐printed metal oxide transistors based on pure aqueous chemistries are presented. These inks readily convert to functional thin films at lower processing temperatures (T ≤ 250 °C) relative to organic solvent‐based oxide inks, facilitating the fabrication of high‐performance transistors with both inkjet‐printed transparent electrodes of aluminum‐doped cadmium oxide (ACO) and semiconductor (InOx ). The intrinsic fluid properties of these water‐based solutions enable the printing of fine features with coffee‐ring free line profiles and smoother line edges than those formed from organic solvent‐based inks. The influence of low‐temperature annealing on the optical, electrical, and crystallographic properties of the ACO electrodes is investigated, as well as the role of aluminum doping in improving these properties. Finally, the all‐aqueous‐printed thin film transistors (TFTs) with inkjet‐patterned semiconductor (InOx ) and source/drain (ACO) layers are characterized, which show ideal low contact resistance (R c < 160 Ω cm) and competitive transistor performance (µ lin up to 19 cm2 V?1 s?1, Subthreshold Slope (SS) ≤150 mV dec?1) with only low‐temperature processing (T ≤ 250 °C).  相似文献   

14.
An inkjet printing process for depositing palladium (Pd) thin films from a highly loaded ink (>14 wt%) is reported. The viscosity and surface tension of a Pd‐organic precursor solution is adjusted using toluene to form a printable and stable ink. A two‐step thermolysis process is developed to convert the printed ink to continuous and uniform Pd films with good adhesion to different substrates. Using only one printing pass, a low electrical resistivity of 2.6 μΩ m of the Pd film is obtained. To demonstrate the electrochemical pH sensing application, the surfaces of the printed Pd films are oxidized for ion‐to‐electron transduction and the underlying layer is left for electron conduction. Then, solid‐state reference electrodes are integrated beside the bifunctional Pd electrodes by inkjet printing. These potentiometric sensors have sensitivities of 60.6 ± 0.1 and 57 ± 0.6 mV pH?1 on glass and polyimide substrates, and short response times of 11 and 6 s, respectively. Also, accurate pH values of real water samples are obtained by using the printed sensors with a low‐cost multimeter. These results indicate that the facile and cost‐effective inkjet printing and integration techniques may be applied in fabricating future electrochemical monitoring systems for environmental parameters and human health conditions.  相似文献   

15.
Ordered mesoporous carbon (OMC) is considered one of the most promising materials for electric double layer capacitors (EDLC) given its low‐cost, high specific surface area, and easily accessed ordered pore channels. However, pristine OMC electrode suffers from poor electrical conductivity and mechanical flexibility, whose specific capacitance and cycling stability is unsatisfactory in flexible devices. In this work, OMC is coated on the surface of highly conductive three‐dimensional graphene foam, serving as both charge collector and flexible substrate. Upon further decoration with silver nanowires (Ag NWs), the novel architecture of Ag NWs/3D‐graphene foam/OMC (Ag‐GF‐OMC) exhibits exceptional electrical conductivity (up to 762 S cm?1) and mechanical robustness. The Ag‐GF‐OMC electrodes in flexible supercapacitors reach a specific capacitance as high as 213 F g?1, a value five‐fold higher than that of the pristine OMC electrode. Moreover, these flexible electrodes also exhibit excellent long‐term stability with >90% capacitance retention over 10 000 cycles, as well as high energy and power density (4.5 Wh kg?1 and 5040 W kg?1, respectively). This study provides a new procedure to enhance the device performance of OMC based supercapacitors, which is a promising candidate for the application of flexible energy storage devices.  相似文献   

16.
Fiber‐shaped micro‐supercapacitors (micro‐SCs) have attracted enormous interest in wearable electronics due to high flexibility and weavability. However, they usually present a low energy density because of inhomogeneity and less pores. Here, we demonstrate a microfluidic‐directed strategy to synthesize homogeneous nitrogen‐doped porous graphene fibers. The porous fibers‐based micro‐SCs utilize solid‐state phosphoric acid/polyvinyl alcohol (H3PO4/PVA) and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate/poly(vinylidenefluoride‐co‐hexafluoropropylene) (EMIBF4/PVDF‐HFP) electrolytes, which show significant improvements in electrochemical performances. Ultralarge capacitance (1132 mF cm?2), high cycling‐stability, and long‐term bending‐durability are achieved based on H3PO4/PVA. Additionally, high energy densities of 95.7–46.9 µWh cm?2 at power densities of 1.5–15 W cm?2 are obtained in EMIBF4/PVDF‐HFP. The key to higher performances stems from microfluidic‐controlled fibers with a uniformly porous network, large specific surface area (388.6 m2 g?1), optimal pyridinic nitrogen (2.44%), and high electric conductivity (30785 S m?1) for faster ion diffusion and flooding accommodation. By taking advantage of these remarkable merits, this study integrates micro‐SCs into flexible and fabric substrates to power audio–visual electronics. The main aim is to clarify the important role of microfluidic techniques toward the architecture of electrodes and promote development of wearable electronics.  相似文献   

17.
The electrical contact is one of the main issues preventing semiconducting 2D materials to fulfill their potential in electronic and optoelectronic devices. To overcome this problem, a new approach is developed here that uses chemical vapor deposition grown multilayer graphene (MLG) sheets as flexible electrodes for WS2 field‐effect transistors. The gate‐tunable Fermi level, van der Waals interaction with the WS2, and the high electrical conductivity of MLG significantly improve the overall performance of the devices. The carrier mobility of single‐layer WS2 increases about a tenfold (50 cm2 V?1 s?1 at room temperature) by replacing conventional Ti/Au metal electrodes (5 cm2 V?1 s?1) with the MLG electrodes. Further, by replacing the conventional SiO2 substrate with a thin (1 µm) parylene‐C flexible film as insulator, flexible WS2 photodetectors that are able to sustain multiple bending stress tests without significant performance degradation are realized. The flexible photodetectors exhibited extraordinarily high gate‐tunable photoresponsivities, reaching values of 4500 A W?1, and with very short (<2 ms) response time. The work of the heterostacked structure combining WS2, graphene, and the very thin polymer film will find applications in various flexible electronics, such as wearable high‐performance optoelectronics devices.  相似文献   

18.
A new film‐casting method for polymer electrodes is reported, in which thickness‐controlled drop‐casting (TCDC), using polyaniline doped with camphorsulfonic acid (PANI:CSA) is used. By combining the advantages of conventional spin‐casting and drop‐casting methods, and by rigorously controlling the film formation parameters, flexible polymer electrodes with high conductivity and excellent transmittance can be produced. The PANI:CSA electrodes cast by the TCDC method exhibited constant thickness‐independent conductivities of ~600 S cm?1 down to a film thickness of 0.2 μm, and a high optical transmittance of about 85% at 550 nm. Furthermore, the new casting method significantly reduced the sheet resistance (~90 Ω/square) of the PANI:CSA electrodes compared with the conventional spin‐cast films, enhancing the performance of the devices deposited on plastic substrates. The flexible polymer light‐emitting diode produced a brightness of 6000 cd m?2, and the flexible polymer solar cell exhibited a power conversion efficiency of 2%, both of which were much higher than those of the devices fabricated by the conventional spin‐casting method.  相似文献   

19.
Printing semiconductor devices under ambient atmospheric conditions is a promising method for the large‐area, low‐cost fabrication of flexible electronic products. However, processes conducted at temperatures greater than 150 °C are typically used for printed electronics, which prevents the use of common flexible substrates because of the distortion caused by heat. The present report describes a method for the room‐temperature printing of electronics, which allows thin‐film electronic devices to be printed at room temperature without the application of heat. The development of π‐junction gold nanoparticles as the electrode material permits the room‐temperature deposition of a conductive metal layer. Room‐temperature patterning methods are also developed for the Au ink electrodes and an active organic semiconductor layer, which enables the fabrication of organic thin‐film transistors through room‐temperature printing. The transistor devices printed at room temperature exhibit average field‐effect mobilities of 7.9 and 2.5 cm2 V?1 s?1 on plastic and paper substrates, respectively. These results suggest that this fabrication method is very promising as a core technology for low‐cost and high‐performance printed electronics.  相似文献   

20.
2D MXene materials are of considerable interest for future energy storage. A MXene film could be used as an effective flexible supercapacitor electrode due to its flexibility and, more importantly, its high specific capacitance. However, although it has excellent electronic conductivity, sluggish ionic kinetics within the MXene film becomes a fundamental limitation to the electrochemical performance. To compensate for the relative deficiency, MXene films are frequently reduced to several micrometer dimensions with low mass loading (<1 mg cm?2), to the point of detriment of areal performance and commercial value. Herein, for the first time, the design of a 3D porous MXene/bacterial cellulose (BC) self‐supporting film is reported for ultrahigh capacitance performance (416 F g?1, 2084 mF cm?2) with outstanding mechanical properties and high flexibility, even when the MXene loading reaches 5 mg cm?2. The highly interconnected MXene/BC network enables both excellent electron and ion transport channel. Additionally, a maximum energy density of 252 µWh cm?2 is achieved in an asymmetric supercapacitor, higher than that of all ever‐reported MXene‐based supercapacitors. This work exploits a simple route for assembling 2D MXene materials into 3D porous films as state‐of‐the‐art electrodes for high performance energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号