首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
壳聚糖季铵盐/有机累托石纳米复合材料的抗菌性能研究   总被引:1,自引:0,他引:1  
合成了壳聚糖季铵盐, 并通过溶液插层法将其插层进入有机累托石层间制备纳米复合材料, 研究表明, 当壳聚糖季铵盐与有机累托石的质量比为2∶1时, 其获得了4.8nm的最大层间距. 抗菌结果显示, 在偏酸、中性及偏碱性条件下, 所有的纳米复合材料都具有较好的抗菌性能, 且与有机累托石的含量和层间距成正比. 与壳聚糖季铵盐及有机累托石相比, 纳米复合材料对革兰氏阳性菌、革兰氏阴性菌及真菌的抗菌性能大大提高, 对金黄色葡萄球菌和枯草芽孢杆菌的最小抑制浓度仅为0.00313% (W/V), 且能在30min内杀死90%以上的金黄色葡萄球菌, 80%以上的大肠杆菌. 最后, 通过TEM和SEM结果探讨了其抗菌机理.  相似文献   

2.
A series of biopolymer chitosan/montmorillonite (CTS/MMT) nanocomposites were prepared by controlling the molar ratio of chitosan (CTS) and montmorillonite (MMT). The nanocomposites were characterized by FTIR and XRD. The effects of different molar ratios of CTS and MMT, initial pH value of the dye solution and temperature on adsorption capacities of samples for Congo Red (CR) dye have been investigated. The adsorption capacities of CTS, MMT and CTS/MMT nanocomposite with CTS to MMT molar ratio of 5:1 for CR were compared. The results indicated that the adsorption capacity of CTS/MMT nanocomposite was higher than the mean values of those of CTS and MMT. The adsorption kinetics and isotherms were also studied. It was shown that all the sorption processes were better fitted by pseudo-second-order equation and the Langmuir equation.  相似文献   

3.
采用原位聚合的方法将酸化的蒙脱土(H-MMT)与酚醛树脂(PF)进行复合,制成剥离型酚醛树脂/蒙脱土(PF/MMT)纳米复合材料和其泡沫体.用XRD和TEM对复合材料的结构进行研究,并对复合材料泡沫体的性能进行了测试.结果表明:H-MMT与酚醛树脂复合后能形成剥离型PF/MMT纳米复合材料,制成的泡沫中的MMT片层发生...  相似文献   

4.
Objective: The aim of this study was to prepare pH-sensitive ofloxacin (OFL)/montmorillonite (MMT)/chitosan (CTS) nanocomposite microspheres that improve the burst release effect of the drug by the solution intercalation technique and emulsification cross-linking techniques. Methods: First, OFL/MMT hybrids were prepared through the solution intercalation technique. Then, OFL/MMT-intercalated OFL/MMT/CTS nanocomposite microspheres were obtained through emulsification cross-linking technology. The intercalated nanocomposite was confirmed by Fourier-transform infrared spectroscopy and X-ray diffraction. Finally, in vitro release of OFL from the microspheres was performed in simulated gastric fluids and simulated intestinal fluids. The effect of MMT content on drug encapsulation efficiency and the drug release of the nanocomposite microspheres were investigated. Results: The results showed that the release rate of OFL from the nanocomposite microspheres at pH 7.4 was higher than that at pH 1.2. Compared with pure CTS microspheres, the incorporation of certain amount of MMT in the nanocomposite microspheres can enhance the drug encapsulation efficiency and reduce the burst release. Conclusion: A sustained release particulate system can be obtained by incorporating MMT into the nanocomposite microspheres and can improve the burst release effect of the drug.  相似文献   

5.
刘俊莉  赵燕茹  马建中  马歌 《材料导报》2016,30(20):34-38, 43
采用一种简便的方法制备了氧化锌插层蒙脱土纳米复合材料。首先将蒙脱土充分充水后进行冷冻,具有层状结构的蒙脱土充水后会发生膨胀,部分从块状的蒙脱土上剥离形成超薄的片层结构。然后通过可控的水热过程使氧化锌纳米粒子进入蒙脱土层间或覆盖于表面。结果表明,直径1~3 nm 的纳米氧化锌会插层于蒙脱土的层间,而直径达10~25 nm的纳米氧化锌则会镶嵌在蒙脱土表面。该纳米复合材料对模拟污染物甲基橙具有优异的光催化性能。  相似文献   

6.
With the aim to develop a novel water-soluble modified chitosan nanoparticle with tuned size and improved antibacterial activity, quaternized carboxymethyl chitosan/poly(amidoamine) dendrimers (CM-HTCC/PAMAM) were synthesized. Firstly low-generation amino-terminated poly(amidoamine) (PAMAM) dendrimers were prepared via repetitive reactions between Michael addition and amidation, which were then employed for modifying quaternized carboxymethyl chitosan (CM-HTCC). Prior to the reaction of CM-HTCC with PAMAM, carboxylic groups in CM-HTCC were activated with EDC/NHS in order to enhance the reaction efficiency. FT-IR, 1H NMR, elemental analysis and XRD were performed to characterize CM-HTCC/PAMAM dendrimers. Turbidity measurements showed that CM-HTCC/PAMAM dendrimers had good water-solubility. TEM images indicated that CM-HTCC/PAMAM dendrimers existed as smooth and spherical nanoparticles in aqueous solution. The results of antibacterial activity explored that CM-HTCC/PAMAM dendrimer nanoparticles displayed higher antibacterial activity against Gram-negative bacteria Escherichia coli (E. coli), whereas they showed much less efficiency against Gram-positive bacteria Staphylococcus aureus (S. aureus) compared to quaternized chitosan (HTCC).  相似文献   

7.
Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods: solution blending and solution blending + melt compounding. The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods. SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all of the PVC/MMT nanocomposites. Thermogravimetric analysis revealed that PVC/Na-MMT nanocomposites have better thermal stability than PVC/OMMT nanocomposites and PVC. In general, PVC/MMT nanocomposites prepared by solution blending + melt compounding revealed improved thermal properties compared to PVC/MMT nanocomposites prepared by solution blending. Vicat tests revealed a significant decrease in Vicat softening temperature of PVC/MMT nanocomposites prepared by solution blending + melt compounding compared to unfilled PVC.  相似文献   

8.
Quaternized carboxymethyl chitosan (QCMC) was intercalated into the interlayer of rectorite (REC) to prepare QCMC/REC nanocomposite. XRD and TEM results revealed that REC was well dispersed in the polymer matrix and obtained the largest interlayer distance when the mass ratio of QCMC to REC was 2:1. FTIR, NMR and zeta-potential analyses showed that the intercalation of QCMC did not destroy the structure of REC layer, but there were hydrogen-bonding and electrostatic interactions between QCMC and REC. Quaternized chitosan (HTCC)/REC nanocomposite was prepared and studied in parallel. The comparative analysis of the two biopolymer/clay nanocomposites indicated that the free volume and positive charge density of biopolymers were important factors that affected the intercalation of biopolymer into clay. At last, thermal analysis indicated that QCMC/REC nanocomposites had obviously higher thermal stability in comparison with QCMC. This study shows that the combination with clay materials is a functional way to expand the possible application of QCMC as drug controlled-release carriers, antimicrobial agent and pulp-cap.  相似文献   

9.
采用四种不同的改性剂对蒙脱土进行处理,在三单体固相接枝聚丙烯作用下,将聚丙烯与四种改性蒙脱土进行复合,制备聚丙烯/蒙脱土纳米复合材料,研究了四种复合材料的结构与力学性能.结果表明,经十六烷基三甲基氯化胺或自制的长碳链带有反应基团的不饱和季胺盐改性的蒙脱土与聚丙烯复合可制备性能优良的纳米复合材料,从力学性能来说,十六烷基三甲基氯化铵改性蒙脱土的效果最好.  相似文献   

10.
何伟  张为民  李亚  谭鑫贵  晏青 《材料导报》2011,25(14):89-92
采用原位聚合法制备PA6/MMT纳米复合材料。利用超薄切片法制备原子力显微镜观测样品,实现了对复合材料中纳米蒙脱土分散情况的原位观测。对复合材料进行了扫描电镜、差示扫描量热、热重、X射线衍射、单轴拉伸、缺口冲击等实验,结果表明,超薄切片法制备的PA6/MMT纳米复合材料原子力实验样品较好地实现了对纳米蒙脱土分散情况的原位观测。插层过程扩大了蒙脱土片层的间距,蒙脱土在基体中分散均匀。蒙脱土在基体中起到了异相形核作用,复合材料的结晶速率升高,热分解温度有所下降。拉伸强度与弹性模量随蒙脱土含量的增加而增加。相比于纯尼PA6,复合材料的冲击强度有不同程度的增加。  相似文献   

11.
A novel injectable thermosensitive hydrogel (CS–HTCC/α β-GP) was successfully designed and prepared using chitosan (CS), quaternized chitosan (HTCC) and α,β-glycerophosphate (α,β-GP) without any additional chemical stimulus. The gelation point of CS–HTCC/α β-GP can be set at a temperature close to normal body temperature or other temperature above 25°C. The transition process can be controlled by adjusting the weight ratio of CS to HTCC, or different final concentration of α,β-GP. The optimum formulation is (CS + HTCC) (2% w/v), CS/HTCC (5/1 w/w) and α,β-GP 8.33% or 9.09% (w/v), where the sol–gel transition time was 3 min at 37°C. The drug released over 3 h from the CS–HTCC/α,β-GP thermosensitive hydrogel in artificial saliva pH 6.8. In addition, CS–HTCC/α,β-GP thermosensitive hydrogel exhibited stronger antibacterial activity towards two periodontal pathogens (Porphyromonas gingivalis, P.g and Prevotella intermedia, P.i). CS–HTCC/α, β-GP thermosensitive hydrogel was a considerable candidate as a local drug delivery system for periodontal treatment.  相似文献   

12.
顾晓华  李付 《材料导报》2017,31(Z2):388-391
以线性低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)、有机改性的蒙脱土(MMT)为主要原料,选用乙烯-醋酸乙烯酯接枝马来酸酐(EVA-g-MAH)作为增容剂,采用熔融插层法制备了线性低密度聚乙烯/高密度聚乙烯/蒙脱土(LLDPE/HDPE/MMT)纳米复合材料。通过X射线衍射(XRD)分析蒙脱土在聚乙烯基体中的分散情况,并研究蒙脱土的含量对其在基体中分散效果的影响。TG实验结果表明,蒙脱土的加入使LLDPE/HDPE/MMT纳米复合材料的热稳定性得到很大的提高。由DSC曲线可以得出,加入蒙脱土的复合材料相比于纯聚合物,其熔点和热分解温度都有很大的提高,提高程度与蒙脱土的含量有关。  相似文献   

13.
研究了相容剂马来酸酐接枝聚丙烯对聚丙烯/蒙脱土纳米复合材料(PP/MM T)的影响,它不仅显著改善了PP与蒙脱土的界面相容性,使复合材料力学性能显著提高,而且改善了复合材料的加工流动性。PP的断裂方式属典型的脆性断裂,含有马来酸酐接枝聚丙烯的PP/MM T断裂方式属韧性断裂。蒙脱土在聚丙烯结晶时起成核剂的作用,提高了PP/MM T纳米复合材料的结晶速率。相容剂使得有机蒙脱土对PP的成核作用更加明显。  相似文献   

14.
通过插层技术合成了卵磷脂/蒙脱土(PC/MMT)纳米中间体,利用XRD、FT-IR对合成的卵磷脂/蒙脱土纳米中间体进行了表征,结果表明卵磷脂已进入了蒙脱土层间,其层间距高达6.13nm;通过溶血试验和血浆复钙试验评价了PC/MMT纳米中间体的血液相容性,试验结果表明PC/MMT纳米中间体的溶血率<5%,符合生物医学材料的标准,复钙时间较长,有良好的血液相容性;预示了其在生物医药领域的潜在应用性.  相似文献   

15.
Drug/metal ion complexes exhibit improved antimicrobial activity and intercalating the above complexes into the interlayer of clay endows a long-term and controlled-release behavior. In this study, chlorhexidine was first complexed with copper (II) ion and then intercalated into the interlayer of MMT to form chlorhexidine–copper (II)/montmorillonite (CHX–Cu/MMT) nanocomposites. The nanocomposites were characterized with Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). A nearly lateral-monolayer arrangement of CHX–Cu was supposed for the intercalation. Release kinetics indicated that the release process satisfied a pseudo-second-order mode. The antibacterial results showed that the CHX–Cu/MMT composites had long-term and controlled-release behavior.  相似文献   

16.
Gelatin, because of its biodegradability and ecofriendly nature, has been the best choice for controlled release applications. Montmorillonite (MMT) clay shows a very important role in controlling drug delivery. Hence, an attempt was made in this work to prepare gelatin–MMT nanoparticles by desolvation method using acetone as precipitating agent, glutaraldehyde (GA) as crosslinking agent, and water as reaction media for controlled delivery of isoniazid, a drug for tuberculosis. Characterization of the MMT and isoniazid-loaded gelatin–MMT nanoparticles was carried out using Fourier transform infrared spectroscopy, X-ray diffraction study, scanning electron microscopy study, and transmission electron microscopy study. The effect of MMT on gelatin nanoparticles was evaluated in terms of water uptake studies, and subsequently to the release of isoniazid drug in buffer solution at pH 1.2 (gastric pH) and pH 7.4 (intestinal pH). Swelling experiment indicated that the gelatin nanoparticles were very sensitive to the pH environment. The release profile of drug was studied by a UV–Visible spectrophotometer. Cytotoxicity study revealed that MMT-containing nanoparticles showed less cytotoxicity than MMT-free nanoparticles.  相似文献   

17.
In this study, flake-like polyaniline/montmorillonite (PANI/MMT) nanocomposites with rough surface were successfully prepared by in situ chemical oxidation polymerization during which poly(2-acrylamido-2-methylpropanesulfonic acid), a polymer acid, on the surface of clay platelets was used as dopant of PANI and played a ‘bridge’ role to combine PANI with clay. Flake thickness and surface roughness of PANI/MMT composites decreased with the increase of montmorillonite/aniline feeding ratio. The effects of operating parameters including pH, contact time, Cr(VI) concentration, and adsorbent dose were studied. The pseudo-second-order equation and three adsorption isotherms including Langmuir, Freundlich, and Temkin equations were applied to determine the adsorption rate and capacity. The results show that the flake-like PANI/MMT nanocomposites exhibited a high adsorption capacity (167.5 mg/g). The excellent adsorption characteristic of flake-like PANI/MMT nanocomposites will render it a highly efficient and economically viable adsorbent for Cr(VI) removal.  相似文献   

18.
Polyaniline (PANI) nanorods/Ce(OH)3-Pr2O3/montmorillonite (MMT) nanocomposites were synthesized via in situ polymerization of aniline monomer through reverse micelle template (RMT) in the presence of montmorillonite and Ce(OH)3, Pr2O3. In the experiment, sulphosalicylic acid was used as dopant, aniline was designated as oil phase and the aqueous solution comprising Ce3+ and Pr3+ as water phase. The nanocomposites were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy and thermogravimetry-differential thermal analysis (TG-DTA). The results showed that PANI nanorods were synthesized in the interlayer spaces of MMT with uniform spherical rare earth nanoparticles. The thermal stability of the nanocomposites prepared was enhanced drastically compared with pure polyaniline.  相似文献   

19.
通过插层技术合成了醋酸洗必泰-盐酸特比萘芬/蒙脱土(CA-TBNF/MMT)药物控、缓释纳米中间体,利用XRD对其结构进行了表征,结果表明CA-TBNF已进入MMT层间,层间距变化明显。最小抑菌浓度与缓释浓度匹配,从层间解析出的CA与TB-NF在协同作用下对细菌和真菌都有较好的杀菌效果。实验证明两种药物可实现同步缓释。  相似文献   

20.
Objective: The purpose of this research was the development, in vitro, ex vivo and in vivo characterization of lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan.

Methods: Insulin nanoparticles were prepared from methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4 pyridinyl) and methylated N-(benzyl). Insulin nanoparticles containing non-modified chitosan and also trimethyl chiotsan (TMC) were also prepared as control. The effects of the freeze-drying process on physico-chemical properties of nanoparticles were investigated. The release of insulin from the nanoparticles was studied in vitro. The mechanism of the release of insulin from different types of nanoparticles was determined using curve fitting. The secondary structure of the insulin released from the nanoparticles was analyzed using circular dichroism and the cell cytotoxicity of nanoparticles on a Caco-2 cell line was determined. Ex vivo studies were performed on excised rat jejunum using Frantz diffusion cells. In vivo studies were performed on diabetic male Wistar rats and blood glucose level and insulin serum concentration were determined.

Results: Optimized nanoparticles with proper physico-chemical properties were obtained. The lyophilization process was found to cause a decrease in zeta potential and an increase in PdI as well as and a decrease in entrapment efficiency (EE%) and loading efficiency (LE%) but conservation in size of nanoparticles. Atomic force microscopy (AFM) images showed non-aggregated, stable and spherical to sub-spherical nanoparticles. The in vitro release study revealed higher release rates for lyophilized compared to non-lyophilized nanoparticles. Cytotoxicity studies on Caco-2 cells revealed no significant cytotoxicity for prepared nanoparticles after 3-h post-incubation but did show the concentration-dependent cytotoxicity after 24?h. The percentage of cumulative insulin determined from ex vivo studies was significantly higher in nanoparticles prepared from quaternized aromatic derivatives of chitosan. In vivo data showed significantly higher insulin intestinal absorption in nanoparticles prepared from methylated N-(4-N, N-dimethylaminobenzyl) chitosan nanoparticles compared to trimethyl chitosan.

Conclusion: These data obtained demonstrated that as the result of optimized physico-chemical properties, drug release rate, cytotoxicity profile, ex vivo permeation enhancement and increased in vivo absorption, nanoparticles prepared from N-aryl derivatives of chitosan can be considered as valuable method for the oral delivery of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号