首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
PBT/PET共混体系的晶区的相容性及形态结构   总被引:9,自引:0,他引:9  
用广角X射线衍射法(WAXD)、差示扫描量热法(DSC)以及红外光谱法(IR)等方法证明了在聚对苯二甲酸丁二酯(PBT)/聚对苯二甲酸乙二酯(PET)共混体系中两组分是晶相分离的,而不生成混晶。动态力学分析结果表明,PBT、PET两组分晶区之间的无定型部分仍具有相容性,共混体系的形态结构因组分比不同而变化。长周期L、无定形区厚度A以及晶区厚度C均随PBT含量的增加而减小。结晶温度升高,有利于晶区厚  相似文献   

2.
Miscible blends of rigid poly(vinyl chloride), PVC, and epoxidized natural rubber (ENR) having 50 mol % epoxidation level, are prepared in a Brabender Plasticorder by the melt-mixing technique. Changes in Brabender torque and temperature, density, dynamic mechanical properties and DSC thermograms of the samples are studied as a function of blend composition. The PVC-ENR blends behave as a compatible system as is evident from the singleT g observed both in dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The moderate level broadening of theT g zone in blends is due to microinhomogeneity, which may arise from the particle structures of PVC perturbing the molecular level mixing of PVC and ENR. Scanning electron microscopic studies were conducted on nitric acid-etched samples and the results showed continuous structures of blend components as well as the occurrence of solvent-induced cracks in high PVC blends.  相似文献   

3.
研究了在多官能团单体——三烯丙基聚异氰酸酯(TAIC)存在下,辐照对PBT/HIPS体系相容性的影响。并用DSC,DMA,SEM和力学性能测试等方法对其形态结构,结晶性能,相容性及力学性能进行了表征。结果表明,辐照使体系中PBT熔程变宽,结晶度下降,结晶速率变慢,结晶尺寸分布变宽,结晶完善性变差;辐射引发多官能团单体反应,使体系的两个Tg松弛发生内移,改善了体系的相容性;当PBT为分散相时,体系的微区尺寸明显变小,甚至难以分清两相结构;辐射改性提高了PBT为分散相的体系力学性能。  相似文献   

4.
PPS/PBT共混体系的研究   总被引:5,自引:0,他引:5  
在Brabender混合仪中,用熔融混合法制备结晶/结晶共混体系PBT/PPS。采用DSC、WAXD和SEM对共混物的结晶,熔融,相容性和形态进行了研究。结果表明,PBT/PPS共混物是不相容的,各自自己的微区内进行结晶。PBT加入可使窝本粘度明显上升。  相似文献   

5.
聚酯/热致液晶聚合物体系的非等温结晶动力学研究   总被引:7,自引:0,他引:7  
热致性液晶共聚酯PET/60PHB组分对PET及PBT在两种共混体系中的非等温结晶行为的影响用DSC方法进行了研究,并用Ozawa方法处理了动力学数据。随共混体系LCP含量的增加,PET的Avrami指数n趋于降低而PBT的n值趋于增加,表明在非等温结晶条件下,对不同组成的共混物体系有着不同的成核和晶体生长的机理。  相似文献   

6.
The tensile modulus, tensile strength and impact strength of melt blends of (a) poly(ethylene naphthalate) (PEN) and poly(butylene terephalate) (PBT) with 30, 40, 50, 60 and 70 wt% PEN, (b) Nylon66 and PEN with 30, 50 and 70 wt% Nylon66 were measured, and thermal/thermomechanical properties were analysed by differential scanning calorimetry and dynamic mechanical thermal analysis. Scanning electron microscopy was used for examination of the fracture surfaces of the blends.All PBT/PEN blends show two glass transitions corresponding to the presence of two phases: the glass transition temperature, T g, of the phase with the lower T g increases with increasing PEN content, and T g for the phase with higher T g decreases with increasing PBT content. The implication is that the two polymers are partially miscible, and scanning electron microscopy of fracture surfaces reveals a very small (sub-micron) domain size. Nylon66/PEN blends also show two phases, but the domain size is of the order of m and there is no evidence of partial miscibility.Up to 50 weight proportions PBT does not lower the tensile strength of PBT/PEN blends, and the tensile strength lies between values predicted by the rule of mixtures and a modified rule of mixtures. Incorporation of at least 40% PEN in PBT increases impact strength, but blending with smaller proportions of PEN decreases impact strength. By contrast, blending of Ny66 and PEN results in reduction of tensile strength for all blend compositions.  相似文献   

7.
Discontinuity in crystallization rates and a new and unusual morphology consisting of thickened straight-stalks crystal lamellae with also straight branches radiating out from a common nucleus were observed in blends of poly(vinyl acetate) (PVAc) with poly(1,4-butylene adipate) (PBA). The discontinuity in the crystal growth and mechanisms of straight-dendrite morphology of the PVAc/PBA blends were analyzed using polarized-light optical microscopy (POM), differential scanning calorimetry (DSC), and wide-angle X-ray diffraction (WAXD). The discontinuity in crystallization rate and dendritic morphology occurred only at or near PVAc/PBA 10/90 blend composition upon crystallization at high-temperature regimes of Tc = 30-33 °C. By comparison, when crystallized at the same temperatures, PVAc/PBA blends of amorphous polymer loading greater than 15% or the neat PBA (amorphous polymer loading = 0) developed no dendrites but only typical Maltese-cross spherulites. Mechanism of straight dendrites in the blends is preliminarily expounded. Detailed interpretation requires further analyses.  相似文献   

8.
The crystallization behavior of poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blends was investigated at different PMMA content and from two solvents N,N-dimethylformamide (DMF) and ethanol. The PVDF/PMMA blends were obtained by in situ polymerization of methyl methacrylate (MMA) in the solution of PVDF in DMF. The crystalline phases of PVDF were dependent on crystalline solvents and independent on PMMA content. For the in situ PVDF/PMMA blends, β phase of PVDF was predominant when they were crystallized from their good solvent DMF, while PVDF exhibited well-defined α and β phases from non-solvent ethanol. However, the relative fraction of β phase of PVDF in blends crystallized from ethanol varied with PMMA content. The crystallization morphology was related to crystallization solvent and PMMA content. The in situ blends crystallized from DMF and ethanol presented spherulites morphology and numerous minute particle structures, respectively. The addition of PMMA could reduce the spherulite size of PVDF. Thermal properties of in situ blends were also dominated by crystallization solvent and PMMA content. For the blends crystallized from DMF, their peak melting temperatures and lamellar thickness calculated by WAXD showed a first increasing and then decreasing tendency. At the same PMMA content, the blends crystallized from ethanol had a higher degree of crystallinity (X c) of PVDF compared with those from DMF. In addition, the X c calculated by DSC increased noticeably at PMMA content of 1.0 wt% and afterward it decreased with PMMA content, regardless of the kind of crystallization solvent. Besides, the hydrophilicity of the PVDF/PMMA blends was improved with PMMA content based on contact angle measurements.  相似文献   

9.
Bud-branched nanotubes, fabricated by growing metal particles on the surface of multi-wall carbon nanotubes (MWCNTs), were used to prepare poly(vinylidene fluoride) (PVDF) based nanocomposites. The results of differential scanning calorimetry (DSC) showed that the introduction of the MWCNTs and bud-branched nanotubes both increased the crystallization temperature, while no significant variation of Tm (melting temperature), ΔHc (melting enthalpy) and ΔHm (crystallization enthalpy) occurred. The results of wide angle X-ray diffraction (WAXD) tests showed that α-phase was the dominated phase for both pure PVDF and its nanocomposites, indicating the addition of the MWCNTs and bud-branched nanotubes did not alter the crystal structures. Dynamic mechanical analysis (DMA) tests showed that bud-branched nanotubes were much more efficient in increasing storage modulus than the smooth MWCNTs. In addition, no significant variation of the Tg (glass transition temperature) was observed with the addition of MWCNTs and bud-branched nanotubes. Tensile tests showed that the introduction of MWCNTs and bud-branched nanotubes increased the modulus. However, a dramatic decrease in the fracture toughness was observed for PVDF/MWCNTs nanocomposites. For PVDF/bud-branched nanotubes nanocomposites, a significant improvement in the fracture toughness was observed compared with PVDF/MWCNTs nanocomposites.  相似文献   

10.
聚乙二醇改性PET/PBT共混体系研究   总被引:3,自引:0,他引:3  
本文以廉价易得的聚乙二醇(PEG)作结晶促进剂,利用WAXD、DSC研究了PET/PBT共混体系的结晶行为,并以共混体系结晶熔融峰面积计算PET和PBT各自的结晶度。结果发现,加入PEG可以使共混体系冷结晶峰温明显下降,PEG用量越大,冷结晶峰温越低,结晶速度加快;随着PEG分子量增大,当小于2000或等于2000时,冷结晶峰温随之降低,但当分子量≥6000时,冷结晶峰温随之略有升高;加入PEG,对共混体系中PET和PBT各自结晶的作用不同,二者的结晶度随PEG分子量或用量变化不同。  相似文献   

11.
Morphological observations by optical and scanning electron microscopy, wide (WAXS) and small (SAXS) angle X-ray scattering, differential scanning calorimetry (DSC) and mechanical tests have been performed on sheet specimens of isotactic polypropylene (iPP)/polyisobutylene (PIB) blends obtained under different crystallization conditions. Two kinds of morphologies have been observed, particularly at high crystallization temperatureT c, on thin sections of the same sheets: a spherulitic one in the centre and a row-like structure on the edges. The size of the spherulites, as well as the thickness of the row-like regions, decreases with diminishingT c, and seemsto be independent of the amount of rubber. The adhesion among the spherulites and between the spherulites and the row-like regions seems to become poorer with higherT c. The rubber particles seem to be evenly dispersed into the iPP matrix for samples quenched at low temperatures, whereas for samples isothermally crystallized (at highT c) their concentration seems to be slightly higher at the border of the spherulites than in the centre. The overall crystallinity measured by DSC and by WAXS is an increasing function ofT c and decreases with increasing amount of PIB. The index of iPP phase, quite low indeed (max 3%), drops with loweringT c and with enhancing PIB percentage. The long spacingL for a given quenching temperatureT q is independent of PIB content, whereas for isothermally crystallized samples at low undercooling varies differently according toT c. The lamellar thicknessL c is always a decreasing function of rubber content. Stress-strain analysis shows a more and more brittle behaviour both with increasingT c (beyondT c=122° C all the specimens are very brittle irrespective of PIB amount) and PIB amount in accordance with the morphological observations. Some tentative hypotheses have been made to explain the observed behaviour.  相似文献   

12.
Poly(styrene-co-acrylonitrile) (SAN) was found to be miscible with the tetraglycidylether of 4,4'-diaminodiphenylmethane (TGDDM), as shown by the existence of a single glass transition temperature (T g) over the whole composition range. However, SAN was found to be immiscible with the 4,4-diaminodiphenylmethane (DDM)-cured TGDDM. Dynamic mechanical analysis (DMA) shows that the DDM-cured TGDDM/SAN blends have two T gs. A scanning electron microscopy (SEM) study revealed that all the DDM-cured TGDDM/SAN blends have a two-phase structure. The fracture toughness K IC of the blends increased with SAN content and showed a maximum at 10 wt% SAN content, followed by a dramatic decrease for the cured blends containing 15 wt% SAN or more. The SEM investigation of the K IC fracture surfaces indicated that the toughening effect of the SAN-modified epoxy resin was greatly dependent on the morphological structures.  相似文献   

13.
The effect of thermoplastic polyurethane (TPU) elastomer on the melting point and the percentage crystallinity of polyacetal (POM) is studied by differential scanning calorimetry (DSC). Wide angle X-ray diffraction (WAXD) scans of POM, TPU and their blends have been taken and the results indicate that the crystalline structure of POM remains unaffected even after the addition of amorphous TPU. The influence of defects like holes and notches on the ultimate tensile strength has been examined. The resistance to crack initiation (J c), the resistance to steady state crack propagation (R p) and the resistance to crack growth at maximum load (R max) are estimated. The POM/TPU blends display higher crack resistance values than pure POM. The hysteresis energy of blends is determined and is found to increase with TPU content.  相似文献   

14.
Novel polyphenylene oxide/polyamide 6 (PPO/PA6) blends were synthesized via in situ polymerization of ε-caprolactam with PPO dissolved in it. The introduction of 10 wt% PPO into PPO/PA6 led to phase inversion of the blends, which was nearly completed by incorporating 15 wt% PPO into the blends. A single crystallization temperature (T c) of PA6 was detected for PPO/PA6 with 1–4 wt% PPO, while double T c existed in the blends with 6–15 wt% PPO. After eliminating previous thermal history, PPO/PA6 containing no more than 6 wt% PPO gave a single melting point (T m), but the blends with 10–15 wt% PPO exhibited double T m. Increasing PPO content in PA6 resulted in the transformation of its crystal form from α-crystal to γ-crystal, which might be attributed to hindrance of crystallization of PA6 particles in PPO-rich phase.  相似文献   

15.
合成了半柔性热致液晶聚酰胺(TLCPa),通过熔融共混方法制备了TLCPa/PA66共混物.用差示扫描量热(DSC)、广角X射线衍射(WAXD)、扫描电子显微镜(SEM)和傅里叶红外光谱(FTIR)等分析手段对共混物进行了综合研究.DSC研究表明:TLCPa的加入使共混物的熔融温度和结晶温度向低温方向漂移,结晶速率下降.根据WAXD分析:强剪切有利于TLCPa与PA66分子间形成氢键作用,TLCPa与PA66形成共晶.SEM分析显示:TLCPa与PA66具有良好的相容性,沿流动方向TLCPa变形成为微纤.FTIR分析显示TLCPa与PA66分子间存在氢键作用.  相似文献   

16.
采用丙烯腈-丁二烯-苯乙烯(ABS)核壳结构改性剂增韧聚对苯二甲酸丁二醇酯(PBT)/聚碳酸酯(PC)共混物。动态力学测试(DMTA)结果表明,PBT与PC为热力学不相容体系,ABS的引入导致PBT、PC玻璃化转变温度相互靠近,相容性提高;差示扫描量热(DSC)研究结果表明,随着ABS的加入,PBT/PC体系中PBT的...  相似文献   

17.
PEN/PBT共混物的结晶行为和热性能   总被引:1,自引:0,他引:1  
用差示扫描量热量仪(DSC)和热重分析仪(TGA)对聚对萘二甲酸乙二酯(PEN)/聚对苯二甲酸丁二酯(PBT)共混物的相容性、结晶行为和热性能进行了研究。结果表明,PEN/PBT共混物属于热力学相容体系。加入少量PBT会使PEN的冷结晶行为扩大。热稳定性相对较差的PBT的加入会在一定程度上使PEN/PBT共混物的热稳定性下降。  相似文献   

18.
To investigate the effect of PBT-PC interfacial strength on the fracture toughness and toughening mechanisms of the PBT/PC system, a series of PBT/PC blends with different content of in situ formed PBT-PC copolymers were made by melt blending. The in situ copolymer was separately prepared via reactive blending of the PBT and PC in the presence of a transesterification catalyst in a twin-screw extruder for a few minutes. The reactive extrudate (RE) was studied using a DSC and the existence of the PBT-PC copolymer in the RE was confirmed. Microstructure characterizations of the PBT/PC/RE blends revealed that the domain sizes of the PBT and PC decrease and the PBT-PC interfacial strength increases with the RE content. Compared with the PBT/PC blend, all the PBT/PC/RE blends have higher yield strength, elongation at break as well as tensile modulus. The quasi-static fracture tests show that fracture toughness of the blends increases with the RE content. Since the highest toughness was obtained with the blend having the highest RE content (7.5%), it is not certain at this stage whether adding more than 7.5% RE will further improve the fracture toughness. The impact toughness of the PBT/PC/RE blends was found to decrease with the increase of the PBT-PC interfacial strength, which confirms the failure mechanisms proposed in the Part-4 of this series.  相似文献   

19.
Binary blends of polyamide-6 (PA-6)/polypropylene-grafted-maleic anhydride (PP-g-MA) and PA-6/low density polyethylene-grafted-maleic anhydride (LDPE-g-MA) were prepared with varied concentration (0–30 wt%) of maleic anhydride-grafted polyolefinic (PP) moiety as the impact modifier. The microstructural attributes and thermal properties of the blends were characterized by WAXD, FTIR, SEM, DSC, and TGA. The WAXD/DSC studies have revealed that the crystallinity of the blends decreased with the increase in the PP modifier whereas the onset of degradation temperature remained nearly unaffected. Comparative assessment of the crack toughness behavior of the blends has been carried out following the essential work of fracture (EWF) approach based on post-yield fracture mechanics (PYFM) concept. The kinetics of crack propagation of the blends has been discussed in the realms of structural and compositional parameters. An enhancement in the toughness (resistance to stable crack propagation) as indicated by a maximum in the non-EWF (βw p) values have been observed at 10 and 20 wt% followed by a sharp and consistent drop in the composition regime of 10–20 and 20–30 wt% of PP-g-MA and LDPE-g-MA, respectively; conceptually implying possible ductile-to-semiductile transitions in the blend systems. The equivalence of PYFM–EPFM fracture parameters have been discussed following inequality criterion. Fractured surface morphology investigations revealed that the failure mode of the blends undergo a systematic transition from matrix-controlled homogeneous flow/deformation in the PP/polyamide phase to blend composition-dependent changes in the modes and extent of fibrillation via cavitation and shear-banding mechanisms.  相似文献   

20.
Transparent glasses of CaBi2B2O7 (CBBO) were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were, respectively, confirmed by X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). The glass transition (T g) and the crystallization parameters (crystallization activation energy (E cr) and Avrami exponent (n)) were evaluated under non-isothermal conditions using DSC. The heating rate dependent glass transition and the crystallization temperatures were rationalized by Lasocka equation for the as-quenched CBBO glasses. There was a close agreement between the activation energies for the crystallization process determined by Augis and Bennet and Kissinger methods. The variation of local activation energy (E c(x)) that was determined by Ozawa method increased with the fraction of crystallization (x). The Avrami exponent (n(x)) decreased with the increase in fraction of crystallization (x), suggesting that there was a changeover in the crystallization process from the bulk to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号