首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用稻壳、杨木在600℃下制备稻壳炭、杨木炭,以稻壳、稻壳炭、杨木、杨木炭为填料填充高密度聚乙烯(HDPE)制备复合材料,并对其性能进行测试分析。结果表明,跟稻壳、杨木相比,稻壳炭、杨木炭具有较高的含碳量、较大的比表面积、发达的孔隙结构及较低的极性;稻壳炭/HDPE复合材料的弯曲强度、弯曲模量、拉伸强度、拉伸模量分别为34.95 MPa、1.76 GPa、26.25 MPa、1.83 GPa,均高于稻壳/HDPE复合材料,杨木炭/HDPE复合材料的弯曲强度、弯曲模量、拉伸强度、拉伸模量分别为40.14 MPa、2.43 GPa、30.64 MPa、2.17 GPa,均高于杨木/HDPE复合材料;此外,稻壳炭/HDPE复合材料、杨木炭/HDPE复合材料的抗蠕变强度、抗应力松弛能力均高于稻壳/HDPE复合材料、杨木/HDPE复合材料。以上实验结果可为农林废物的高值化利用提供新的思路。   相似文献   

2.
以稻壳为原料,以H3PO4、KOH、ZnCl2为活化剂在600℃条件下制备三种活性炭,以生物炭、三种活性炭为填料填充高密度聚乙烯(HDPE)制备生物炭/HDPE复合材料和活性炭/HDPE复合材料,并对其力学性能进行测试和分析。结果表明,活性炭比生物炭具有更高的比表面积和发达的孔隙结构,其中经H3PO4活化制备的活性炭比表面积最高,为714.27 m2/g;活性炭/HDPE复合材料比生物炭/HDPE复合材料具有更佳的力学性能,相对于其他材料而言,经H3PO4活化制备的活性炭/HDPE复合材料具有较佳的弯曲性能、拉伸性能、刚性、弹性、抗蠕变性能及抗应力松弛能力,其弯曲强度、弯曲模量、拉伸强度、拉伸模量分别为38.66 MPa、2.46 GPa、32.17 MPa、1.95 GPa。本研究可为活性炭的材料化利用提供有益的借鉴经验。   相似文献   

3.
苎麻/LLDPE复合材料力学性能的研究   总被引:12,自引:2,他引:10       下载免费PDF全文
研究了成型工艺、碱液及硅烷偶联剂预处理对苎麻/LLDPE复合材料力学性能的影响。结果表明:经碱液、KH-550和A-151硅烷偶联剂分别预处理后,苎麻/LLDPE复合材料的拉伸性能均有不同程度的提高,拉伸强度由51.0MPa分别提高到102.6 MPa、83.6 MPa及89.8 MPa。经A-151预处理后,材料的弯曲强度及弯曲模量由23.1 MPa、1.58 GPa提高到81.6 MPa、6.01 GPa,单位面积总冲击能及动态弯曲强度由30.9 kJ/m2、31.3 MPa提高到37.8 kJ/m2、106 MPa。   相似文献   

4.
采用拉挤成型工艺制备了结构均一有序、外貌光亮顺滑的高性能碳纤维/环氧树脂复合材料板,并对其进行了力学性能测试。研究结果表明:高性能碳纤维/环氧树脂复合材料板,在0°条件下,拉伸强度1889MPa,拉伸模量141GPa,压缩强度1212MPa,压缩模量130GPa,弯曲强度1107MPa,弯曲模量136GPa;在90°条件下,弯曲强度86MPa;层间剪切强度61.834MPa,具有较好的力学性能。  相似文献   

5.
对以环氧树脂为基体,不同混纺比的洋麻/棉混纺织物为增强体所制备的复合材料进行力学性能测试,从而优选最佳洋麻/棉混纺比。然后对最佳混纺比的洋麻/棉混纺织物进行阻燃处理,并测试其增强环氧树脂复合材料力学性能。结果表明,洋麻/棉(40/60)混纺织物增强环氧树脂复合材料力学性能最优,其拉伸强度和模量分别为101.9MPa和6.16GPa;弯曲强度和模量分别为189.64MPa和12.14GPa;剪切强度为17.47MPa。经过阻燃处理的洋麻/棉(40/60)混纺织物增强环氧树脂复合材料其拉伸强度和模量分别为67.85 MPa和5.81GPa;弯曲强度和模量分别为126.02 MPa和8.96GPa;剪切强度为13.62MPa;阻燃性能为自息时间0s,损毁长度4cm;其性能满足汽车零件性能要求,具有一定的实际应用性。  相似文献   

6.
碳纤维三维编织复合材料的结构对拉伸和弯曲性能的影响   总被引:9,自引:0,他引:9  
研究了碳纤维四步法三维四向、三维五向编织结构复合材料的拉伸和弯曲性能,以及结构参数-编织角的变化对其拉伸和弯曲性能的影响,并与层合复合材料作了对比性研究.结果表明,三维编织复合材料具有良好的力学性能,其拉伸强度可达810MPa、拉伸模量可达95.6GPa,弯曲强度可达829.03MPa、弯曲模量可达67.5GPa.同时,编织角和编织结构对复合材料性能有较大的影响.随着编织角的增大,复合材料的拉伸、弯曲强度和模量均减小;三维五向结构的拉伸、弯曲强度和模量均高于四向结构;在纤维体积含量相近的情况下,通过对编织角的设计,可以设计三维编织复合材料的性能.  相似文献   

7.
为充分利用红枣精深加工产生的废弃物,以枣核(JP)和低密度聚乙烯(LLDPE)为主要材料,采用注塑成型法制备JP/LLDPE复合材料,并对其静态力学性能(拉伸、弯曲和冲击)和动态力学性能(动态黏弹性、蠕变行为和应力松弛行为)进行系统测试分析。静态力学性能分析表明,随JP含量的增加,JP/LLDPE复合材料的拉伸强度和冲击强度逐渐降低,但复合材料的弯曲强度得到明显的提升。当JP添加量为20wt%时,JP/LLDPE复合材料的弯曲强度最高,较纯LLDPE的弯曲强度提高63.57%;动态力学分析表明,JP含量的增加有利于提高JP/LLDPE复合材料的刚性、抗蠕变性能和抗应力松弛性能,而温度的升高会对JP/LLDPE复合材料的抗蠕变性能和抗应力松弛性能产生不利的影响。   相似文献   

8.
采用环状对苯二甲酸丁二醇酯(CBT)原位聚合制备了连续玻璃纤维(GF)增强聚环状对苯二甲酸丁二醇酯(PCBT)复合材料。考察了聚合反应中催化剂用量对PCBT结晶度以及GF/PCBT复合材料力学性能的影响。当催化剂用量为0.5%(质量分数)时, PCBT的结晶度为53%, GF/PCBT的力学性能达到最佳, 拉伸强度为522 MPa, 拉伸模量为27 GPa, 弯曲强度为481 MPa, 弯曲模量为24.8 GPa, 层间剪切强度(ILSS)为43 MPa。SEM观察表明, 发现催化剂用量为0.5%时, 树脂与纤维的结合性较好。进一步研究了淬火和退火后处理对复合材料力学性能的影响。发现复合材料退火处理后具有较好的力学性能, 其中拉伸强度为545 MPa, 弯曲强度为495 MPa。  相似文献   

9.
以单向连续竹青纤维(OBF)和不饱和聚酯树脂(UP)制备了单向OBF/UP复合材料,研究了OBF含量对OBF/UP复合材料纵向静态力学性能及动态力学性能的影响,并采用SEM观察了复合材料拉伸断面处界面结合情况。结果表明:随着OBF含量的增加,OBF/UP复合材料静态力学性能呈先增加后减小趋势,当OBF含量为50wt%时,复合材料拉伸、弯曲性能最优,拉伸强度、拉伸模量、弯曲强度、弯曲模量分别达到285.52 MPa、16.06 GPa、359.80 MPa、27.32 GPa;OBF/UP复合材料存储模量随OBF含量增加呈先增加后减小趋势,当OBF含量为50wt%时,OBF/UP复合材料存储模量最大,且随着OBF含量的增加,OBF/UP复合材料玻璃化转变温度向低温方向移动,损耗峰变宽;断面处微观形貌表明,OBF含量为50wt%时,复合材料界面结合强度较好。制备的OBF/UP复合材料力学性能优良,有潜力取代玻璃纤维增强树脂复合材料在风电叶片材料、公路防护栏材料、船舶材料等领域的应用。   相似文献   

10.
碳纳米管/碳纤维/环氧树脂复合材料研究   总被引:1,自引:0,他引:1  
制备了碳纳米管(CNTs)/碳纤维(CF)/环氧树脂(EP)三元复合材料。研究了CNTs含量对复合材料层间剪切强度、弯曲强度和弯曲模量的影响,并采用场发射扫描电镜分析了CNTs在基体树脂中的分散情况。结果表明:复合材料性能的变化源自于CNTs在基体树脂中的分散状态。当CNTs含量为0.2%(wt,下同)时,复合材料剪切强度和弯曲强度达到最大值,分别为99.2MPa和1811.4MPa,但其弯曲模量下降了8.7GPa。当CNTs添加量达到1%时,其弯曲模量达到135.9GPa,较未加入CNTs时提高了11.1%,层间剪切强度和弯曲强度分别降低了5.5MPa和359.5MPa。  相似文献   

11.
连续三叶形碳化硅纤维的性能研究   总被引:2,自引:0,他引:2  
利用先驱体转化法制备三叶形 SiC纤维,并对纤维性能、电磁参数及其环氧基复合材料的力学性能等进行研究。结果表明三叶形 SiC纤维的异形度、当量直径有一定的分布;三叶形 SiC纤维增强复合材料的弯曲强度为 400MPa,弯曲模量为 30GPa,拉伸强度为425MPa,拉伸模量为 66GPa;电磁参数研究表明在x波段具有较好的频响特性;反射率测试表明,厚度为1.55mm时,在Ku 波段具有较好的吸波效果,反射衰减最大达-26dB。  相似文献   

12.
采用浇铸成型工艺制备含0.5wt%、长度分别为1 mm、3 mm、5 mm的短切玻璃纤维/环氧树脂(GF/EP)复合材料,研究含活性酚羟基和不含酚羟基的两种聚酰亚胺(PI)处理GF表面对纤维束拉伸强度及GF/EP复合材料力学性能的影响,并进一步研究PI处理GF对复合材料热性能的影响。研究结果表明,经过PI处理的GF,集束性和拉伸强度得到提高。含活性酚羟基聚酰亚胺(PI1)处理的GF拉伸强度由原丝束的517 MPa提高到1 032 MPa,不含酚羟基聚酰亚胺(PI2)处理的GF提高到986 MPa。当PI1处理的GF长度为3 mm时,GF/EP复合材料的力学性能最好,拉伸强度比未处理的提高23.62%,拉伸模量提高34.03%,弯曲强度提高28.74%,断裂韧性提高13.04%;PI2处理的GF,GF/EP复合材料拉伸强度提高15.87%,拉伸模量提高23.70%,弯曲强度提高14.11%,断裂韧性提高4.05%。此外,PI处理GF对GF/EP复合材料热性能也有一定程度的提高。  相似文献   

13.
采用真空压力浸渗法制备体积分数为50%的2.5D浅交直联C_f/Al复合材料,研究复合材料的显微组织以及室温、高温下弯曲和剪切性能,分析复合材料弯曲和剪切性能的破坏失效机理。结果表明:2.5D浅交直联C_f/Al复合材料经向、纬向显微组织均存在一定的微孔、纤维丝偏聚等缺陷。室温的弯曲强度、弯曲模量、剪切强度分别为268.4 MPa,75.2 GPa和41.0 MPa,350℃的弯曲强度、弯曲模量、剪切强度分别为139 MPa,70.9 GPa和39.2 MPa,400℃的弯曲强度、弯曲模量、剪切强度分别为97.6 MPa,68.5 GPa和29.9 MPa;其中,弯曲失效主要由于内侧面受压导致经向纤维束在压应力作用下被压断,纬向纤维束产生挤压变形;外侧面受拉处随测试温度升高复合材料拉伸破坏现象不明显;而剪切破坏首先出现在基体与纤维束界面损伤处,室温下纤维束被拔出,断口不平齐,350,400℃时纤维束断口呈现45°破坏;经向纤维束屈曲与纬向纤维束挤压变形程度随测试温度升高越来越严重。  相似文献   

14.
利用湿法手工铺叠工艺和紫外光固化技术,制备以双酚A环氧树脂E-44与有机硅环氧树脂ES-06共混改性光敏树脂体系为基体的玻璃布增强复合材料,测试并分析比较了复合材料的力学和热老化性能.结果表明,在光敏树脂基体中加入链转移剂以及对光固化后的复合材料进行加压后固化处理,均能显著提高复合材料的性能.采用E-44与ES-06质量比为2:1的共混改性树脂体系制备的复合材料的力学性能和耐热老化性能最佳,其拉伸强度达到146.6 MPa,拉伸模量为19.4GPa,弯曲强度为152.5MPa,层间剪切强度达到16.2 MPa.  相似文献   

15.
为改善玉米醇溶蛋白(Zein)的拉伸性能,本文以竹粉为原料制备生物炭,以球磨后的生物炭(0.536 μm)、竹纤维(2.157 μm)为增强相,以Zein为连续相,利用溶液浇注法制备复合膜材料,并对复合膜材料的基本特性与拉伸性能进行了研究。结果表明,生物炭与竹纤维加入没有改变Zein的晶面结构,提高了Zein的无序性,降低了Zein的脆性,提高了Zein的韧性。生物炭的加入降低了竹纤维/Zein复合膜的亲水性,降低了竹纤维/Zein复合膜的热稳定性,改善了竹纤维/Zein复合膜的拉伸性能。相比而言,添加0.2 g竹纤维、0.1 g生物炭的Zein复合膜材料的拉伸性能最佳,其拉伸强度、拉伸模量、断裂伸长率分别为0.24 MPa、4.17 MPa、327.27%。本文制备的复合膜材料具有较好的拉伸性能,在包装膜材料领域具有一定的应用潜力。   相似文献   

16.
用碱处理、蒸汽闪爆、蒸汽闪爆结合碱处理这3种预处理方法制备的棉秆皮纤维作为增强体,通过热压成型制备了棉秆皮纤维/聚丙烯复合材料。首先优化了制备该复合材料的棉秆皮纤维长度、热压温度、压力以及时间等工艺参数,并以此优化工艺为基础,研究了3种预处理方法制备的棉秆皮纤维对复合材料拉伸、弯曲、冲击性能以及微观形貌的影响。结果表明:在棉秆皮纤维长度为8cm、热压温度170℃、热压压力3MPa、热压时间4min条件下制备的复合材料性能较优;在3种预处理方法中,采用蒸汽闪爆与碱预处理棉秆皮纤维制备的复合材料性能最优,复合材料拉伸强度为36.290MPa、拉伸模量为4557.40MPa、弯曲强度为63.31MPa、弯曲模量为4780.00MPa、冲击强度为485.0J/m。  相似文献   

17.
使用层间喷涂法制备了石墨烯/炭纤维/聚醚醚酮(GR/CF/PEEK)复合材料,对材料微观形态、力学性能、热学以及电学性能进行了分析。结果表明,0.1 wt%的石墨烯的加入即可使复合材料的层间剪切强度(ILSS)从57.3 MPa增加到77.6 MPa,弯曲强度和弯曲模量分别从1 226.2 MPa、64.5 GPa增加到1 512.3 MPa、73.6 GPa。差示扫描量热结果证明少量石墨烯的加入能够提高复合材料基体的结晶度。同时复合材料的热导率和电导率也随着石墨烯含量的增加而增加,加入0.5 w t%的石墨烯,复合材料的热导率和电导率与未加入石墨烯相比分别增加了15.5%和73.1%。GR/CF/PEEK复合材料与CF/PEEK相比具有更优良的综合性能。  相似文献   

18.
茶生物质/聚丙烯复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
为高值化利用茶产业剩余物资源,以废弃茶生物质(Tea biomass,TB)为填料,聚丙烯(Polypropylene,PP)为基体,采用密炼-注塑工艺制备了TB/PP复合材料,考察了茶生物质填料种类、处理方式及其添加量对复合材料结构、形态及性能的影响。实验结果显示,以茶树枝为生物质填料制备的复合材料力学性能最佳,茶梗次之,茶叶最差;茶梗填料经水煮和马来酸酐接枝聚丙烯增容处理后,复合材料的拉伸强度、弯曲强度、拉伸模量及弯曲模量分别提高了23.4%、9.0%、16.9%和13.9%。SEM图片显示茶梗填料与基体界面相容性提高。随茶梗填料用量的增加,复合材料的拉伸模量、弯曲模量逐渐增大,而拉伸强度及断裂伸长率缓慢下降,吸水率增加,热性能得到改善。当TS添加量为30%(质量分数)时,复合材料的拉伸强度比PP减小7.3%,但弯曲强度、弯曲模量及拉伸模量则分别提高11%、86.1%和54.7%。浸水80h后吸水率为0.89%。  相似文献   

19.
采用正压过滤法制备了多壁碳纳米管(MWCNTs)网格(巴基纸),并采用真空辅助RTM工艺制备了MWCNTs网格/环氧树脂复合材料。通过SEM、FTIR、拉伸测试等对MWCNTs网格的微观形貌和性能进行了表征,并研究了MWCNTs网格/环氧复合材料的拉伸性。结果表明,所制备的功能化MWCNTs网格比较均匀,拉伸强度在22~32 MPa之间,拉伸模量约为1 GPa,相比未功能化处理的MWCNTs网格,强度最大提高了约167%。功能化MWCNTs网格/环氧树脂复合材料的拉伸强度和拉伸模量可达到152 MPa和6.48 GPa,相比空白环氧树脂提高了约1倍以上,拉伸试样断面SEM表明,环氧树脂对功能化MWCNTs网格的浸润效果良好,界面结合紧密,有效地提高了复合材料的力学性能。  相似文献   

20.
以高密度的环氧树脂 TDE-85作为基体,选择不同的固化剂,研制出了三种高模量高强度的树脂体系,并对其力学性能、微观结构、自由体积进行了研究。论文取得了如下创造性的研究成果:(1)制备了拉伸模量大于5.0GPa,压缩模量大于6.0GPa,拉伸强度大于80MPa 的树脂体系,并对其力学性能进行了测试,系统研究了模量与密度之间的关系,同时对其微观断口形貌进行了观察。(2)研究了高模量基体对玻璃纤维增强复合材料单向板各项性能的影响。结果表明,随着基体模量的提高,复合材料的拉伸性能、压缩性能、弯曲性能、剪切性能显著提高。玻璃纤维复合材料的压缩强度达1337.5MPa,弯曲强度达2324.6MPa。(3)利用纳米材料 SiO_2、TiO_2、α-Al_2O_3、改性双酚 A 型环氧树脂,解决了纳米柱子均匀分散的技术难题。系统研究了纳米拉子对环氧树脂拉伸模量、强度、冲击韧性、热变形温度的影响。以纳米 SiO_2、高强玻璃纤维共同增强环氧树脂,制备了纳米纤维环氧树脂复合材料。这一研究在国内尚未见报道。(4)利用正电子淹没技术测试了自由体积,首次用实验验证了模量与自由体积的密切关系。对于 TDE-85/胺体系,在环氧基/胺摩尔比相同的条件下,浇铸体密度降低,自由体积的尺寸与浓度增大,浇铸体的模量与玻璃化温度降低。纳米粒子的加入,使自由体积尺寸增大,自由体积浓度降低,模量与玻璃化温度升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号