首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
针对遥感图像目标检测困难,当前网络难以兼顾检测精度与实时性的问题,提出一种轻量级的遥感图像检测模型Yolov4_Rs。以Yolov4为基准,将轻量级网络Mobilenetv2作为主干特征提取网络,减小模型容量;在网络颈部融入多个特征增强金字塔模块,丰富特征信息;在特征融合网络中去掉下采样,引入残差连接;使用K-means++算法对数据集进行聚类。实验结果表明,Yolov4_Rs体积仅为Yolov4的25.1%,在RSOD和UCAS-AOD数据集上的MAP相比Yolov4分别提升了2.26%、0.99%,表明该模型比Yolov4检测效果更好,是一种轻量高效的检测模型。  相似文献   

2.
针对遥感图像目标检测任务中存在的目标尺度差异大、检测精度低等问题,提出了一种基于加权策略的改进YOLOv3遥感图像目标检测模型。为提高对遥感图像中小目标的检测精度,增加具有较小感受野的特征图像的检测分支。设计了一种多尺度特征图像自适应加权融合方法,通过挖掘特征提取网络的表征能力,综合利用多尺度特征提高了目标检测精度。采用DIOR数据集的4类目标构建了一个新的遥感图像目标检测数据集,并进行了改进模型的训练与测试。实验结果表明,改进后的模型取得了80.25%的平均精度均值(mean Average Precision,mAP),相比于改进前提高了8.2%。将训练模型对RSOD、UCAS-AOD、NWPU VHR-10数据集进行测试,验证了改进模型具有较好的适应性。  相似文献   

3.
电池模组极片焊点的检测与定位是电池模组拆解成功的第一步.基于工人肉眼的焊点检测误差较大且效率低下,基于深度学习模型的检测价格昂贵且计算代价极大.对此,提出了基于Yolov3的小样本智能电池模组焊点检测与定位方法.对样本图像进行灰度化及高斯模糊处理,采用Yolov3算法对样本的目标数据集进行特征提取训练,再调整训练的网络模型参数,由训练数据所得到的模型用于电池模组焊点检测.实验表明,使用Yolov3网络的焊点检测准确率达到90%以上,且焊点定位具有极高的精度,能够满足实际应用的需求.  相似文献   

4.
为解决在嵌入式设备上实时、高精度检测司机安全驾驶监督的问题,本文基于目标检测中经典的深度学习神经网络YOLOv3-tiny,运用通道剪枝技术成功在目标检测任务中实现了模型压缩,在精度不变的情况下减少了改进后神经网络的计算总量和参数总数.并基于NVIDIA的推理框架TensorRT进行了模型层级融合和半精度加速,部署加速后的模型.实验结果表明,加速模型的推理速度约为原模型的2倍,参数体积缩小一半,精度无损失,实现了高精度下实时检测的目的.  相似文献   

5.
为解决分辨率超限问题,实现对遥感图像帧特征对象的精准识别,提出基于边缘检测及RBF神经网络的遥感图像帧特征动态识别技术。求解微分算子与OTSU阈值,并以此为基础,确定边缘节点追踪参数的取值范围,实现对遥感图像边缘检测。根据RBF神经网络机制的构建标准,推导神经性激活函数,完成RBF神经网络识别模型的设计。在所选遥感图像中,实施帧特征分割处理,再联合动态合并条件,计算超像素指标与并行识别参量,完成基于边缘检测及RBF神经网络的遥感图像帧特征动态识别方法的设计。实验结果表明,在边缘检测与RBF神经网络模型的作用下,主机元件在长、宽、高三个方向上对于遥感图像帧特征对象的识别精度都达到了100%,分辨率超限问题得到较好解决,符合精准识别遥感图像特征的实际应用需求。  相似文献   

6.
针对遥感图像目标检测存在的尺度多样化、分布密集、小目标检测困难等问题,提出了一种改进YOLOv5网络的遥感图像目标检测的新方法Fca_YOLOv5。该方法引入了频率通道注意力网络,引导模型更加关注信息丰富的特征;将网络输入尺寸优化为1 024,减少了图像缩放带来的影响;采用圆形平滑标签计算角度损失,对船舰目标进行旋转目标检测,进一步提升检测效果。在DOTA遥感图像数据集上进行实验,检测精度最高达到了75.9%,船舰旋转目标检测精度达到了96.1%,并且Fca_YOLOv5s的检测精度比YOLOv5s提高了3.1%。实验结果表明,改进网络对遥感图像中的微小目标具有较好的检测效果,有效提升了遥感图像的检测精度,对实现遥感图像中的微小目标检测具有一定的参考意义。  相似文献   

7.
俞汝劼  杨贞  熊惠霖 《计算机应用》2017,37(6):1702-1707
针对军用机场大尺寸卫星图像中航空器检测识别的具体应用场景,建立了一套实时目标检测识别框架,将深度卷积神经网络应用到大尺寸图像中的航空器目标检测与识别任务中。首先,将目标检测的任务看成空间上独立的bounding-box的回归问题,用一个24层卷积神经网络模型来完成bounding-box的预测;然后,利用图像分类网络来完成目标切片的分类任务。大尺寸图像上的传统目标检测识别算法通常在时间效率上很难突破,而基于卷积神经网络的航空器目标检测识别算法充分利用了计算硬件的优势,大大缩短了任务耗时。在符合应用场景的自采数据集上进行测试,所提算法目标检测实时性达到平均每张5.765 s,在召回率65.1%的工作点上达到了79.2%的精确率,分类网络的实时性达到平均每张0.972 s,Top-1错误率为13%。所提框架在军用机场大尺寸卫星图像中航空器检测识别的具体应用问题上提出了新的解决思路,同时保证了实时性和算法精度。  相似文献   

8.
随着传感器技术和航空遥感技术的不断进步,遥感影像的质量和数量也得到了极大的提高,而遥感影像中的目标检测是理解和分析遥感影像所面临的一个基本问题。针对神经网络在遥感影像小目标检测任务中难以提取足够多的有效特征、遥感小目标易受云雾遮挡等问题,提出了一种基于仿真图像模板匹配的方法,通过特征融合的方式成功地将该方法应用于遥感影像小目标检测任务。成像仿真技术生成的仿真图像包含了更多的遥感小目标特征,如几何形状、材质等。在与深度学习结合之后,更多的特征可以提升神经网络检测遥感影像小目标的准确率。实验结果表明将基于仿真图像的模板匹配方法应用于深度学习之后,对于遥感影像小目标检测取得了较好的效果,尤其是针对受到云雾等天气干扰的小目标。  相似文献   

9.
针对RetinaNet在遥感目标检测任务中多尺度、密集小目标问题,提出了ACFEM-RetinaNet遥感目标检测算法。针对原主干特征提取不充分的问题,采用Swin Transformer作为主干网络,以提升算法的特征提取能力,提高检测精度。针对遥感图像多尺度问题,提出自适应上下文特征提取模块,使用SK注意力引导不同空洞率的可变形卷积自适应调整感受野、提取上下文特征,改善多尺度目标检测效果。针对遥感图像中密集小目标问题,引入FreeAnchor模块,从极大释然估计的角度设计优化锚框匹配策略,提高检测精度。实验结果表明,在公共遥感图像目标检测数据集RSOD上,ACFEM-RetinaNet算法取得了91.1%的检测精度,相较于原算法提高了4.6个百分点,能更好地应用于遥感图像目标检测。  相似文献   

10.
滑坡区域图像检测与识别在灾害范围识别、灾情数据分析和防灾减灾中具有丰富的应用和研究价值。本文针对滑坡图像滑坡体形状纹理的多样性,以及滑坡目标区域检测识别效果不够理想的问题,提出一种注意力机制CBAM与空洞卷积结合的目标检测方法。在传统的目标检测算法Faster R-CNN的基础上,将注意力机制模型添加到卷积神经网络层,通过空间注意力与通道注意力结合的CBAM模型来进行滑坡图像特征的提取,增加空洞卷积模块来加大感受野区域,提高神经网络对遥感图像区域中的滑坡目标识别、尺寸不规范等特点的学习能力,从而进一步提升滑坡目标区域的检测精度。实验结果表明,在传统的目标检测算法的基础上采用两者结合的方式进行检测,可提升滑坡遥感图像上目标检测的召回率和精确率,具有一定的有效性和鲁棒性。  相似文献   

11.
考虑多目标跟踪过程中存在的实时性和身份跳变问题,提出一种基于检测的多车辆跟踪算法。首先利用Mobilenetv2替换YOLOv3检测算法的主干网络,构建目标检测模块YOLOv3-Mobilenetv2,减少检测算法模型参数,提高检测模块的运行速度;在Mobilenetv2中引入Bottom-up连接,增强多尺度特征图间的信息融合;然后构建基于LSTM的运动模型,解决卡尔曼滤波在非线性系统中产生的预测误差,基于Deepsort跟踪算法,引入LSTM运动模型,形成L-Deepsort跟踪算法;改进L-Deepsort跟踪算法外观匹配策略,提升目标间的关联性;最后融合轻量级目标检测算法YOLOv3-Mobilenetv2与多目标跟踪算法L-Deepsort,形成MYL-Deepsort多车辆跟踪算法,实现多车辆的实时准确跟踪。实验结果表明,该方法在跟踪性能提升的情况下,速度较YOLOv3-Deepsort提高21 frame/s,在TX2平台达到13 frame/s。  相似文献   

12.
This paper presents an application of backpropagation neural network for the detection of linear structures in remote-sensing images. The purpose of the approach is two-fold. First, to exploit the advantages of a neural network classifier over the tranditional ones. Second, to avoid the strategic phases of enhancement and thresholding. Once the network is learnt, the classification scheme is real-time. Two critical issues in the present approach are the selection of the network architecture and the rate of convergence of learning. Solutions to these two problems are proposed. Experimental results on IRS and SPOT images are presented. Satisfactory classification results have been obtained using the network.  相似文献   

13.
车载探地雷达技术在地铁隧道中的检测得到广泛应用,对保障地铁隧道的安全性和可靠性起到重要的作用。为了对地铁隧道缺陷进行精确检测,并提升检测的效率,构建基于Yolov5模型的车载探地雷达检测系统。首先采用零时校正、去直流、背景去除和图像增益方法对信号和图像进行去噪。然后基于Yolov5目标检测模型,引入SPP-Bottleneck模块进行改进,最后构建基于Yolov5模型的车载探地雷达检测系统。结果显示,改进后的Yolov5模型在置信度相同的条件下,相较于原始模型具有更高的F1值。在实例应用中,基于Yolov5模型的车载探地雷达检测系统F1、精确度、召回率平均值分别为0.884、0.873和0.895,该模型对于隧道中的缺陷检测具有有效性。Yolov5目标检测模型的检测时间为0.3s,相较于其他三种检测模型,效率分别提升了93.75%、84.2%和50.0%,更具有实际应用价值。此次研究解决了传统车载探地雷达技术存在的问题,对地铁的运营和维护具有重要的意义。  相似文献   

14.
随着深度神经网络研究地不断深入,物体检测的精度和速率都在不断提升,但是随着网络层的加深,模型体积不断增大,计算代价也越来越高,无法满足神经网络直接在嵌入式设备上实现快速前向推理的需求.为了解决这个问题,本文针对嵌入式设备进行深度学习物体检测优化算法研究.首先,选择合适的物体检测算法框架和神经网络架构;然后在此基础上针对特定检测场景下采集的图片进行训练和模型剪枝;最后,对移植到嵌入式设备上的模型剪枝后的物体检测模型进行汇编指令优化.综合优化后,与原有网络模型相比,模型体积减小9.96%,速度加快8.82倍.  相似文献   

15.
深度卷积神经网络(Deep convolutional neural network,DCNN)在目标检测任务上使用目标的全标注来训练网络参数,其检测准确率也得到了大幅度的提升.然而,获取目标的边界框(Bounding-box)标注是一项耗时且代价高的工作.此外,目标检测的实时性是制约其实用性的另一个重要问题.为了克服这两个问题,本文提出一种基于图像级标注的弱监督实时目标检测方法.该方法分为三个子模块:1)首先应用分类网络和反向传递过程生成类别显著图,该显著图提供了目标在图像中的位置信息;2)根据类别显著图生成目标的伪标注(Pseudo-bounding-box);3)最后将伪标注看作真实标注并优化实时目标检测网络的参数.不同于其他弱监督目标检测方法,本文方法无需目标候选集合获取过程,并且对于测试图像仅通过网络的前向传递过程就可以获取检测结果,因此极大地加快了检测的速率(实时性).此外,该方法简单易用;针对未知类别的目标检测,只需要训练目标类别的分类网络和检测网络.因此本框架具有较强的泛化能力,为解决弱监督实时检测问题提供了新的研究思路.在PASCAL VOC 2007数据集上的实验表明:1)本文方法在检测的准确率上取得了较好的提升;2)实现了弱监督条件下的实时检测.  相似文献   

16.
深度卷积神经网络模型在很多公开的可见光目标检测数据集上表现优异, 但是在红外目标检测领域, 目标 样本稀缺一直是制约检测识别精度的难题. 针对该问题, 本文提出了一种小样本红外图像的样本扩增与目标检测算 法. 采用基于注意力机制的生成对抗网络进行红外样本扩增, 生成一系列保留原始可见光图像关键区域的红外连 续图像, 并且使用空间注意力机制等方法进一步提升YOLOv3目标检测算法的识别精度. 在Grayscale-Thermal与 OSU Color-Thermal红外–可见光数据集上的实验结果表明, 本文算法使用的红外样本扩增技术有效提升了深度网 络模型对红外目标检测的精度, 与原始YOLOv3算法相比, 本文算法最高可提升近20%的平均精确率(mean average precision, mAP).  相似文献   

17.
目标检测是计算机视觉领域中的一个研究热点。近年来,深度学习中的卷积神经网络在目标检测任务上表现突出。文中综述了深度学习在目标检测技术中的研究进展。首先,介绍了目标检测的两种方法和常用数据集,并分析了基于深度学习的方法在目标检测任务上所具有的优势。其次,根据深度学习的目标检测方法的发展过程,介绍了该方法所使用的经典卷积神经网络模型,并分析了各网络模型的特点。然后,从获取特征的能力、检测的速度及所使用的关键技术等方面进行了分析和总结。最后,根据基于深度学习的目标检测方法中存在的困难和挑战,对未来的发展趋势做了思考和展望。  相似文献   

18.
为了解决YOLO系列目标检测算法存在的精度与计算成本不均衡、模型泛化性不足的问题,提出了可满足不同光照场景下目标检测需求的高精度快速的车辆与行人检测模型YOLO-Day Night and Fast(YOLO-DNF)。文中结合当下主流检测模型所使用的卷积神经网络分析卷积结构与网络深度对于主干网络特征提取能力和计算成本的影响,针对网络不同层次选取卷积结构Arrow-Block与CSP-Block搭建网络并通过量化堆叠单元的计算成本确定网络深度,提出低计算成本、高特征提取能力的ACNet网络。此外分析了白天与夜间图像的亮度差异,引入了HSV域扰动并提出亮度处理的数据增强策略,提升了模型的夜间检测精度,改善了模型泛化性不足的问题。实验结果表明:YOLO-DNF模型在SODA10M数据集仅含白天图像的训练集中训练后以每秒24.36帧的检测速率达到32.8%的全时段mAP检测精度,检测精度与速度超过目前主流检测模型。其中夜间精度达到了27.7%,扩展了模型的检测应用场景。  相似文献   

19.
20.
目的 细粒度图像分类是指对一个大类别进行更细致的子类划分,如区分鸟的种类、车的品牌款式、狗的品种等。针对细粒度图像分类中的无关信息太多和背景干扰问题,本文利用深度卷积网络构建了细粒度图像聚焦—识别的联合学习框架,通过去除背景、突出待识别目标、自动定位有区分度的区域,从而提高细粒度图像分类识别率。方法 首先基于Yolov2(youonly look once v2)的网络快速检测出目标物体,消除背景干扰和无关信息对分类结果的影响,实现聚焦判别性区域,之后将检测到的物体(即Yolov2的输出)输入双线性卷积神经网络进行训练和分类。此网络框架可以实现端到端的训练,且只依赖于类别标注信息,而无需借助其他的人工标注信息。结果 在细粒度图像库CUB-200-2011、Cars196和Aircrafts100上进行实验验证,本文模型的分类精度分别达到84.5%、92%和88.4%,与同类型分类算法得到的最高分类精度相比,准确度分别提升了0.4%、0.7%和3.9%,比使用两个相同D(dence)-Net网络的方法分别高出0.5%、1.4%和4.5%。结论 使用聚焦—识别深度学习框架提取有区分度的区域对细粒度图像分类有积极作用,能够滤除大部分对细粒度图像分类没有贡献的区域,使得网络能够学习到更多有利于细粒度图像分类的特征,从而降低背景干扰对分类结果的影响,提高模型的识别率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号