首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 265 毫秒
1.
研究牛肉生产和销售过程中沙门氏菌诱导耐酸响应(acid tolerance response,ATR)的存在程度及其产生机制。探究微酸诱导、双组分基因敲除、低温长期贮藏对沙门氏菌耐酸能力的影响,同时借助λRed同源重组、实时聚合酶链式反应(real-time polymerase chain reaction,real-time PCR)及氨基酸添加实验探索菌株耐酸性产生的内在机理。结果表明,微酸诱导能够显著增强沙门氏菌的耐酸能力(P<0.05),并且ATR一旦形成,在牛肉低温贮藏(4 ℃)的过程中至少可以维持7 d,对食品安全有极大危害。牛肉培养基作为微酸的细菌生长介质,在低温下其本身并不能引发沙门氏菌产生ATR,说明低温处理可能是抑制沙门氏菌ATR的重要方法。real-time PCR和氨基酸添加实验表明,沙门氏菌的双组分系统PhoP/PhoQ和PmrA/PmrB均参与酸性环境的感知,并能通过调控精氨酸脱羧和赖氨酸脱羧系统提高菌株的耐酸性,这从氨基酸代谢角度解释了沙门氏菌诱导ATR的产生机制,同时也揭示了食品基质提升微生物耐酸性这一表观现象的内在机理。  相似文献   

2.
通过发酵生产工业产品一直是细菌等微生物的研究热点,但是发酵过程中存在的代谢副产物和环境胁迫等问题,限制了工业菌株的发展。sRNA是细菌中普遍存在的一类调控性非编码RNA,它们与核糖开关、双组分系统、转录因子等其他调控元件共同构成了细菌中的复杂调控网络,在代谢调控和抗胁迫中都发挥着异常重要的作用。文章对细菌中sRNA的来源、作用机制以及在调控网络中的角色进行了详细总结,有助于更好地解析细菌的代谢途径及发酵过程中受到的环境限制,对构建低毒力、高鲁棒性菌株,助力工业产品的发酵生产有重要参考意义。  相似文献   

3.
生物膜是很多食源性致病菌应对各种极端环境、杀菌理化因子以及维持菌体内环境稳定的重要基质屏障。数据显示,有超过80%的细菌感染由生物膜引起,尤以金黄色葡萄球菌感染多见。食源性金黄色葡萄球菌是引发细菌性食物中毒和食品安全事故的重要风险源, 特别是多重耐药菌株。金黄色葡萄球菌的耐药性、致病性和免疫逃逸与生物膜复杂的三维结构有重大关系。由于生物膜结构基因和调控因子结构相对保守, 现已成为金黄色葡萄球菌生物防控新的重要的效应靶点。本文从多糖细胞间黏附素、胞外DNA和生物膜形成相关蛋白等角度阐明了生物膜形成机制,从群体感应系统(如Agr系统和LuxS/AI-2群体感应系统)、全局性调控因子(如附属调节因子Sar和转录因子SigB)以及双组分信号转导系统(如SrrAB系统、SaeRS系统、ArlSR系统、LytRS系统和WalKR系统)等角度系统阐述了生物膜形成调控机制。最后,从抗菌肽(蛋白)、植物源化合物、生物酶、抗菌药物等角度提出新的防控策略, 以期为食源性金黄色葡萄球菌的生物防控提供指导。  相似文献   

4.
沙门氏菌和单增李斯特菌诱导性耐酸响应机制的研究进展   总被引:1,自引:0,他引:1  
沙门氏菌和单增李斯特菌被认为是肉制品中最重要的食源性致病菌。它们在弱酸环境下会发生强烈的诱导性耐酸响应,同时诱导产生高毒、耐酸、耐渗透压的高危菌株,是影响消费者健康安全的重大隐患。本文主要从沙门氏菌和单增李斯特菌产生诱导耐酸的发现过程、诱导耐酸响应的危害、产生诱导耐酸的影响因素方面进行概述,进一步从pH值稳态系统、应激蛋白分子的调控及细胞膜组成和流动性调控的角度分析了产生诱导耐酸响应的分子机制。  相似文献   

5.
熊儒恒  阎俊  谢晶 《食品科学》2023,(13):203-215
生物被膜态是细菌在自然界中主要的存在形式。细菌的初始黏附开启了生物被膜形成的生命周期。初始黏附是浮游态细菌在细菌元器件、胞外聚合物等因素的影响下,吸附于生物或非生物表面并开始形成生物被膜的过程。细菌的初始黏附受到多种调控系统的影响,因此,对相关调控系统进行深入研究具有重要的意义。本文对环二鸟苷酸、双组分调控系统和群体感应系统3个主要影响细菌初始黏附的调控系统进行综述,并介绍这些调控系统调控细菌初始黏附作用的机制,同时对从控制初始黏附角度保证食品品质进行总结和展望。本文可为控制细菌生物被膜危害食品品质提供理论依据,对促进食品产业发展具有一定的现实意义。  相似文献   

6.
乳酸菌细菌素是一种新型的生物防腐剂,具有来源广泛、成本较低、抑菌谱广、安全性高等特点,合成量低是细菌素在食品中应用受限的主要原因之一,共培养是提高乳酸菌细菌素合成量的有效途径之一,群体感应系统在共培养诱导细菌素合成过程中发挥关键的作用,群体感应系统包括信号分子和双组分调控系统(组氨酸蛋白激酶和反应调节蛋白)。因此,对调控机制的掌握显得尤为重要。文章论述了共培养中诱导菌与乳酸菌细菌素合成的关系、诱导因子/信号分子AI-2的特征、双组分调控系统及共培养诱导乳酸菌细菌素合成的分子机制。了解诱导机制及特征将有助于筛选和开发共培养诱导细菌素合成系统和新产品,提高细菌素合成量,近而对人体产生益生效应。  相似文献   

7.
涂明霞  刘蕾  高亮  张颖  桂萌  饶瑜 《食品科学》2023,44(3):350-358
细菌群体感应(quorum sensing,QS)是细菌通过信号分子的产生、释放、积累和感应进行化学交流的过程,这种信号分子又称之为自诱导物(autoinducers,AI)。气单胞菌(Aeromonas)是水产品中常见腐败菌,也是动物和人类的环境条件致病菌。近年来研究报道气单胞菌的致病性和腐败行为可能与QS有关,提示可以通过抑制气单胞菌QS对其进行防控。气单胞菌QS系统按照信号分子种类的不同可以分3类:以N-酰基高丝氨酸内酯类化合物(N-acyl homoserine lactone,AHLs)作为信号分子的AI-1系统、以4,5-二羟基-2,3-戊二酮(4,5-dihydroxy2,3-pentanedione,DPD)衍生物为信号分子的AI-2系统和QseBC双组分调控的AI-3系统。本文介绍这3类QS系统及其调控机制,概述植物来源、微生物和动物来源、化学合成类气单胞菌QS抑制剂(quorum sensing inhibitors,QSI)的研究进展,探讨气单胞菌QSI在水产品腐败和水产病害预防中的应用和前景,以期为气单胞菌QSI在水产品安全方面的应用提供参考。  相似文献   

8.
植物乳杆菌作为具有重要经济价值的乳酸菌被广泛应用于食品发酵与保鲜领域,由于其代谢过程中会产生具有广谱抑菌特性、对热稳定且易被蛋白酶水解的细菌素,因此有作为天然食品生物防腐剂的较大应用潜力。研究表明,在发酵过程中菌体的生长和细菌素的合成受多种环境因素如盐胁迫、酸胁迫、氧胁迫及低高温胁迫的影响,但目前环境因素调节信号分子产生以及调控相关基因合成细菌素的具体机制仍然有待研究,另一方面,通用的调控通路还未被发现。因此,本文介绍了植物乳杆菌抵御胁迫的反应机制并详细阐述了环境胁迫下与细菌素合成密切相关的调控基因和重要调控蛋白,为食品发酵加工过程中合理控制发酵条件,促进细菌素合成从而延长食品货架期提供理论依据。  相似文献   

9.
乳酸菌的益生特性已引起公众的广泛关注。群体感应是细菌感受外界环境变化并做出反应的转导机制,对乳酸菌的存活及益生特性至关重要。因此,近些年来乳酸菌的群体感应成为研究热点。该文综述了乳酸菌群体感应的信号分子及其双组分系统,群体感应对乳酸菌环境适应的调控(生物膜、耐酸、耐胆盐),群体感应对乳酸菌益生特性(抑制致病菌、与宿主相互作用)的影响以及实际应用,为乳酸菌群体感应今后的基础研究和工业化应用提供参考。  相似文献   

10.
细菌素是一种在新陈代谢过程中由核糖体合成的具有抑菌作用的抗菌肽,因此被作为天然、无毒抗菌剂并广泛应用到食品行业中。群体感应是细菌细胞间通过对自诱导物浓度的感知,从而对基因表达进行调控的行为,现已证明乳酸菌的群体感应是细菌素合成的关键调控机制。作者主要综述了目前乳酸菌细菌素的研究现状、细菌素的系统分类、群体感应信号的转导机制及其对乳酸菌细菌素合成的调节,以促进对细菌素的研究及应用。  相似文献   

11.
以源于牦牛曲拉的6株益生乳酸菌为研究对象,比较了耐酸能力、耐胆盐能力、耐渗透压能力和抑菌性能。结果表明:6株乳酸菌菌株的耐酸能力、耐胆盐能力、耐渗透压能力和抑菌性能各不相同。菌株G2、G4、Q1对酸性环境的耐受性最好,G2和G4的耐胆酸盐的能力最强,G2、G4、Q1对高渗透压的耐受性较强,所有菌株在模拟胃肠液环境下的存活率均在90%以上;菌株Q2对大肠杆菌的抑菌效果最强,菌株Q1次之;菌株Q1和Q2对金黄色葡萄球菌的抑制效果较好,其次是菌株G2;对沙门氏菌抑菌作用最强的为菌株Q2,抑菌能力最差为G3;对单增李斯特菌抑菌作用最强的为菌株G4。研究结果可为牦牛曲拉源益生乳酸菌的应用提供理论依据。  相似文献   

12.
13.
为了筛选出优良的乳酸菌进行发酵制作酸浆,对分离自云南建水豆腐酸浆中的五株乳酸菌(SYG01、SYG02、SYG03、SYG04、SYG05)的生长曲线、产酸能力、耐酸能力和耐渗透压能力进行了比较。生长曲线实验表明在相同培养时间内,菌株SYG02繁殖能力最强,其次是菌株SYG03,而菌株SYG05、SYG04、SYG01的生长速率明显较慢;在产酸方面SYG02产酸能力最强,速度最快,SYG03、SYG05和SYG04次之,SYG01最弱。在耐酸方面,在pH4.0的环境下5株菌生长良好,在pH3.0的酸性环境下5株菌虽然能够存活,但活菌数的数量级仅在102~104 CFU/mL,其中菌株SYG02和SYG03比其它三株菌株表现出较好的耐酸能力。在耐渗透压方面,SYG02在8%(w/V)的NaCl中依然表现出较强的耐受性,活菌数的数量级达到107 CFU/mL,其余4株菌在NaCl含量大于6%(w/V)时生长受到明显抑制。并以发酵黄浆水的pH及产酸量为指标对菌株的产酸能力进行比较,发现混合菌株的产酸能力高于单菌株,其中菌株SYG02和菌株SYG03组合发酵的效果最好,在发酵72 h后黄浆水的pH为3.52,产酸量达到6.46 g/L。从而得出菌株SYG02具有良好的生长、产酸和耐渗透压能力,具有良好的应用潜力,对酸浆豆腐的工业化生产有重要的意义。  相似文献   

14.
为了研究四川藏区传统牦牛酸奶中高产胞外多糖乳酸菌特性及发酵性能,以本实验室分离出的六株高产胞外多糖乳酸菌为研究对象,以菌株生长量、耐酸性、胆盐耐受力、渗透压耐受力和细胞表面疏水性为指标进行特性研究;以发酵酸奶的凝乳时间、持水力、酸化及后酸化能力、挥发性物质及质构等为指标进行发酵性能研究。菌株的生长曲线表明,6株菌株分别在14 h(218、276、266)、16 h(271、285、231)进入对数生长稳定期,其中编号218的菌株生长量最高,OD值为2.188。耐受性实验结果表明,菌株276具有良好的耐酸能力(P<0.05);菌株266、218、231耐胆盐的能力较强;6株菌株均具有较好的耐渗透压的能力,其中菌株285对高渗透压的耐受性较强;菌株285和218在两种有机试剂中的疏水性均显著(P<0.05)高于其他菌株,且与十六烷的结合效果较好。发酵试验结果表明,6株菌株所发酵酸奶均在6~8 h内凝固,酸乳在冷藏期间,活菌数均保持在107 CFU/mL以上,均符合发酵剂的标准,其中菌株276的最高为3.22×106 CFU/mL;菌株218发酵制得的酸奶质构特性较好,持水力和酸化能力较其余菌株均最强,分别为60.98%和83 °T;菌株276、266抗后酸化能力较好;菌株231产香性能最优,乙醛含量为24~26 μg/mL,双乙酰含量为1.58~3.73 μg/mL,能够明显改善酸奶的风味。通过综合比较6株高产胞外多糖乳酸菌特性及发酵性能,菌株218为一株性能良好、具有良好稳定性的菌株,可作为乳酸菌发酵剂且具有一定的应用潜力。研究为利用四川藏区传统牦牛酸奶中分离出的高产胞外多糖乳酸菌在发酵乳制品的应用提供理论依据。  相似文献   

15.
乳酸菌耐盐分子机制研究进展   总被引:1,自引:0,他引:1  
乳酸菌广泛应用于食品和发酵行业。在酱油、熏肉、泡菜等发酵食品的生产过程中,乳酸菌的生长常受到 高盐浓度的影响。盐胁迫引起的渗透压变化会引起乳酸菌细胞结构损伤,导致细胞生理代谢活动紊乱甚至死亡。因 此,乳酸菌在盐胁迫条件下生存、生长和代谢的能力在食品发酵过程中是非常重要的。本文就乳酸菌的耐盐机制进 行阐释,以期为乳酸菌科学研究及食品发酵工业应用提供参考。  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号