首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 484 毫秒
1.
正研究不同添加量的产EPS荞麦酸面团对面包烘焙和老化特性的影响。方法:应用分离自酒曲中的产胞外多糖食窦魏斯氏菌T5发酵荞麦粉制成产胞外多糖荞麦酸面团和不产胞外多糖荞麦酸面团,比较2种酸面团的添加量对面包烘焙和老化特性的影响。结果:食窦魏斯氏菌T5在添加蔗糖的条件下,发酵荞麦酸面团产生EPS的含量为9.36 g/kg;含有  相似文献   

2.
将食窦魏斯氏菌和马克斯克鲁维酵母进行混菌发酵,测定菌株生长曲线研究两菌种的共生作用,分析发酵24h后纤维素酶活力以及胞外多糖(EPS)产量,比较混菌发酵全麦面包与单菌发酵全麦面包烘焙与风味特性的差异。结果表明,相比于单菌发酵酸面团的菌落总数[乳酸菌9.51lg(CFU/g),酵母菌8.21lg(CFU/g)],混菌发酵酸面团体系(MBF)中的乳酸菌与酵母菌菌落数分别达到9.61,8.09lg (CFU/g),说明两株菌具有良好的共生关系。相比于单一乳酸菌发酵,含有马克斯克鲁维酵母的混菌发酵酸面团中纤维素酶活力增加,胞外β-葡萄糖苷酶酶活为13.59U/g,提高了128.40%。发酵24h后,体系中水溶性的阿拉伯木聚糖含量从0.77g/100g上升至1.89g/100g。此外,相比于其他两组单菌发酵的全麦酸面团,混菌发酵全麦酸面团产EPS能力最高,为7.54g/kg。相比未添加酸面团的全麦面包,含有混菌发酵全麦酸面团的面包(MBB)比容、弹性显著提高(P0.05),面包芯硬度下降,混菌发酵全麦面包比容显著增加。风味特性结果表明,混菌发酵全麦面包的风味强度明显高于单一乳酸菌发酵,赋予全麦面包更浓郁的酒香和果香,感官评定证实其整体可接受度更高。  相似文献   

3.
采用产胞外多糖(exopolysaccharide,EPS)的融合魏斯氏菌(Weissella confusa)J28制备高产EPS和低产EPS的米粉酸面团,通过生化分析、动态流变测试、质构分析和感官评定等方法,比较2种酸面团对馒头面团流变性、馒头微结构以及蒸制特性的影响。结果表明:在添加蔗糖条件下,J28发酵米粉产生EPS达到11.12 g/kg;乳酸菌发酵产酸激活内源酶,米粉酸面团中淀粉酶活力先增大后减小,可溶性糖含量增加,产生大量的果糖和葡萄糖;蛋白质水解活性升高,大分子可溶性谷蛋白降解。以添加25%普通米粉的馒头面团为对照,酸面团馒头面团弹性模量和黏性模量降低,蛋白质弱化,添加高产EPS酸面团馒头面团更加柔软。与对照馒头相比,酸面团馒头比容显著增大(P0.05),硬度显著降低(P0.05),气孔更加均匀细腻。而添加高产EPS酸面团馒头比低产EPS酸面团馒头质构改良效果更明显,比容增大7.9%,硬度降低28.7%,感官评定得分更高,更加受到消费者欢迎。  相似文献   

4.
从实验室获得1 株高产植酸酶乳酸菌(L-19)并应用于黑豆酸面团面包,同时选用不产植酸酶的乳酸菌(K-12)作为对照。通过分析面包氨基酸组成和营养指标、蛋白质体外消化率、质构特性、超微结构和感官评定,研究其对黑豆酸面团面包蛋白质营养及烘焙学特性的影响。结果表明:添加乳酸菌黑豆酸面团后,面包蛋白营养和烘焙品质都得到了明显改善,其中L-19酸面团面包(L-19SDB)效果最显著。与黑豆面包(BB)相比,L-19SDB植酸含量下降60.68%,蛋白质体外消化率由64.70%升高至73.93%,总氨基酸含量提高73%。同时与其他3 组相比,L-19SDB有更好的氨基酸特征:其必需氨基酸与总氨基酸之比、必需氨基酸指数和生物价均为最高。面包烘焙品质方面,相比黑豆面包BB,L-19SDB和K-12SDB比容分别提高了31.45%和23.59%,硬度降低了68.79%和56.59%。通过ImageJ分析发现,L-19SDB芯囊组织更加均匀,感官评价总体可接受度最高(7.72 分)。  相似文献   

5.
比较研究食窦魏斯氏菌(T5)和融合魏斯氏菌(J28)发酵对荞麦酸面团糖代谢、面包面团面筋网络结构以及面包烘焙特性的影响。结果表明:菌株T5和菌株J28产生的胞外多糖均为高分子葡聚糖;J28发酵荞麦酸面团产糖能力显著高于T5:J28+组(11.87?g/kg)>T5+组(9.36?g/kg),但J28发酵产生乙酸水平明显低于T5;与添加30%的不产胞外多糖酸面团面包相比,T5和J28产生的胞外多糖都能改善面团面筋网络结构和面包比容以及柔软度,但T5产生的胞外多糖改善作用更加明显;与空白组面包相比,J28+组面包烘焙品质最佳,并且更受消费者的喜欢。  相似文献   

6.
利用植物乳杆菌和发酵乳杆菌发酵荞麦面团制作酸面团面包,研究乳酸菌发酵使面包面团抗氧化和烘焙特性的影响。结果表明:乳酸菌发酵降低了荞麦面团的p H,令其总酸度值增加。乳酸菌发酵使荞麦酸面团抗氧化能力有所提高,其中植物乳杆菌发酵的荞麦面团总酚含量提高21.3%、DPPH和ABTS自由基清除能力分别为未发酵荞麦面团的3倍和1.2倍。乳酸菌的引入还能够改善热加工对抗氧化活性物质的影响,烘焙后植物乳杆菌和发酵乳杆菌面包的总酚含量仅减少48.5%和51.6%,而DPPH和ABTS自由基清除能力分别仅降低了41.2%、54.8%和69.0%、68.4%。乳酸菌发酵能够显著改善面包的质构,添加发酵乳杆菌后荞麦面包硬度减少了25.5%,其感官评分高于未发酵荞麦面包。  相似文献   

7.
从自制水果发酵液中分离筛选得到一株高产胞外多糖(exopolysaccharides,EPS)的乳酸菌,经生理生化实验、形态学观察及分子生物学实验鉴定该菌株为融合魏斯氏菌(Weissella confusa)。以该菌株为供试菌进行产糖发酵及分离纯化EPS,并测定EPS的化学组成、溶解性、持水性、乳化性、抑菌性及抗氧化能力。结果表明,总糖、蛋白质、糖醛酸质量分数分别为(93.67±2.08)%、(0.32±0.01)%和(6.01±0.34)%。溶解率和持水率分别为(98.78±1.37)%和(426.03±7.26)%。此外,该EPS展现出良好的乳化性、抑菌性和体外抗氧化活性,且随着EPS质量浓度的升高,作用效果越强。  相似文献   

8.
方靖  陈中  林伟锋 《现代食品科技》2011,27(6):634-636,706
本论文将按两种比例混合的混合乳酸菌发酵剂按22.3%和44.6%添加到面包制作中,测定发酵面团及面包比容、面包感官、面包质构(如硬度、弹性、咀嚼性等).实验结果表明,添加22.3%的发酵剂有助于面团发酵,增加发酵面团比容,添加量达44.6%的发酵剂却会降低面团的比容;烘烤后,乳酸菌发酵的面包比容小于未添加乳酸菌制作的对...  相似文献   

9.
选取融合魏斯氏菌、植物乳酸杆菌2种乳酸菌分别与酵母发酵以及共同与酵母发酵(LP+WC)制备酸面团,与仅添加酵母的酸面团(CK)对比,研究不同酸面团的乳酸菌菌落数变化、有机酸含量及其对馒头面团水分分布、流变学特性以及馒头品质和风味的影响。结果表明,添加乳酸菌发酵的酸面团24 h后pH值保持稳定,WC+LP组乳酸菌菌落数在24 h达到最高,为9.34 lg(CFU/g酸面团)。发酵24 h后,LP组乳酸含量最多,为7.75 mg/g酸面团;LP+WC组乙酸含量最多,为0.49 mg/g酸面团。添加酸面团的馒头面团T2弛豫时间为235.43 ms,CK组为252.35 ms,低于未添加酸面团的馒头面团的T2弛豫时间289.94 ms,且使馒头面团黏弹性下降。酸面团的加入增加了馒头的比容,LP+WC组比容最大为2.17 mL/g,较普通干酵母面包(OSB)增长了20.56%,降低了馒头的硬度,LP+WC组的硬度较OSB降低了25.89%,提升了馒头的弹性,LP+WC组弹性较普通干酵母面包(OSB)增长了4.5%。GC-MS分析表明,在LP+WC组中检...  相似文献   

10.
通过植物乳杆菌(Latobacillusplantarumstrain)15891发酵制作乳酸菌酸面团,以色泽、形态、口感、香味、触感为评价指标,应用模糊数学评价结合正交试验来确定酸面团面包制作的最佳工艺条件。结果表明,酸面团面包最佳制作工艺参数为:酸面团添加量20%、水分添加量为55%,酵母添加量为1.5%,鸡蛋添加量为6%,醒发时间为80 min,按此条件制作的面包与空白面包相比其感官品质得到明显改善,可为酸面团面包的工业生产提供参考依据。  相似文献   

11.
应用分离自我国酒鬼酒曲中的融合魏斯氏菌和梅兰春酒醅中的异常威克汉姆酵母进行混菌发酵,通过测定菌株生长曲线探索两株菌的共生作用,采用固相微萃取结合气质联用(SPME-GC-MS)和气相电子鼻技术,对比混菌发酵酸面团(MBF)和单菌发酵酸面团及其荞麦馒头风味化合物的差异性。结果表明,在MBF中乳酸菌、酵母菌菌落数分别达到9.38 log CFU/g、8.51 log CFU/g,两株菌具有良好的共生关系。发酵后荞麦酸面团的主要特征风味物质为乙醇、乙酸、乙酸乙酯、乙偶姻和异戊醇。与酵母菌单菌发酵荞麦酸面团馒头相比,混菌发酵馒头中酯类物质相对含量从5.27%提高到9.53%,结合ROAV分析,混菌发酵荞麦馒头的风味强度明显高于单一乳酸发酵和单一酵母发酵,赋予馒头更浓郁的酒香和果香,感官评定证实其整体可接受度高于其他组。  相似文献   

12.
Hydrocolloids improve the volume, texture, and shelf life of bread. Exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) during sourdough fermentation can replace hydrocolloids. It was the aim of this study to determine whether heteropolysaccharides (HePS) synthesized intracellularly from sugar nucleotides by glycosyltransferases are produced in wheat and gluten-free sorghum sourdough at effective levels. The HePS-producing strains Lactobacillus casei FUA3185, L. casei FUA3186, and Lactobacillus buchneri FUA3154 were used; Weissella cibaria 10M producing no EPS in the absence of sucrose served as control strain. Cell suspensions of L. buchneri in MRS showed the highest viscosity at low shear rate. Glycosyltransferase genes responsible of HePS formation in LAB were expressed in sorghum and wheat sourdough. However, only HePS produced by L. buchneri influenced the rheological properties of sorghum sourdoughs but not of wheat sourdoughs. Sorghum sourdough fermented with L. buchneri exhibited a low |G| compared to the control, indicating a decrease in resistance to deformation. An increase in tan δ indicated decreased elasticity.The use of LAB producing HePS expands the diversity of EPS and increases the variety of cultures for use in baking.  相似文献   

13.
The majority of gluten-free breads on the market are of poor sensory and textural quality. Exopolysaccharides (EPS) formed from sucrose during sourdough fermentation can improve the technological properties of gluten-free breads and potentially replace hydrocolloids. In this study, the influence of in situ formed EPS on dough rheology and quality of gluten-free sorghum bread was investigated. Dextran forming Weissella cibaria MG1 was compared to reuteran producing Lactobacillus reuteri VIP and fructan forming L. reuteri Y2. EPS containing bread batters were prepared by adding 10% and 20% of sourdough. As control served batters and bread containing sourdoughs fermented without sucrose and batters and bread without sourdough addition. The amount of EPS formed in situ ranged from 0.6 to 8.0 g/kg sourdough. EPS formed during sourdough fermentation were responsible for the significant decrease in dough strength and elasticity, with in situ formed dextran exhibiting the strongest impact. Increased release of glucose and fructose from sucrose during fermentation enhanced CO? production of yeast. Organic acids in control sourdough breads induced hardening of the bread crumb. EPS formed during sourdough fermentation masked the effect of the organic acids and led to a softer crumb in the fresh and stored sorghum bread. Among EPS, dextran showed the best shelf life improvements. In addition to EPS, all three strains produced oligosaccharides during sorghum sourdough fermentation contributing to the nutritional benefits of gluten-free sorghum bread. Results of this study demonstrated that EPS formed during sourdough fermentation can be successfully applied in gluten-free sorghum flours to improve their bread-making potentials.  相似文献   

14.
乳酸菌在酸面团制作中扮演着重要角色,对其风味等品质有显著影响。不同种类的乳酸菌在性能上存在差异,为了选育特色酸面团用乳酸菌发酵剂,开发差异化酸面团面包,本研究对来自不同种类传统发酵食品中的乳酸菌,进行糖代谢能力、产有机酸能力及风味特征评估,并验证其对酸面团和面包风味的影响。结果显示,有6株乳酸菌具有较强的糖代谢能力和产酸性能,风味特征优良。其产生的挥发性风味物质主要包括醇类、酯类、酮类、醛类、酸类和其他类化合物。其中有2株植物乳杆菌可为酸面团面包贡献酸味、果味和酒酿味等特殊风味。这些筛选出的菌株为开发具有特征性香气成分的酸面团发酵剂提供了资源,具有工业应用潜力。  相似文献   

15.
从自然发酵的黑豆中筛选出一株具有高植酸酶活性的乳酸菌L-19并将其作为发酵剂制作黑豆酸面团。通过响应面分析法对黑豆酸面团的发酵工艺进行优化,探究最佳发酵条件下目标菌株的生长及产酸特性,并分析体系中多肽的分子量分布及抗营养因子含量变化,同时以感官品评的方式对黑豆酸面团面包的烘焙特性进行评价。结果表明:乳酸菌L-19经鉴定为乳酸片球菌(Pediococcus acidilactici),其胞外酶与胞内酶活性分别为1.36,0.30 U/mL。通过响应面设计确定的最优发酵条件为面团得率(DY)300、发酵温度37℃、接种量8%,黑豆基质中,目标菌株生长良好、酸化能力适中。黑豆酸面团经发酵后,体系中的多种抗营养因子得到有效降解,其中植酸降解率高达62.70%。此外,黑豆蛋白水解后释放出多种肽,其中小分子肽占比达51.47%。与对照组相比,L-19黑豆酸面团面包表现出更高的整体可接受度。因此,乳酸片球菌L-19能够有效改善黑豆酸面团面包的营养及感官品质,具有较佳的应用潜力。  相似文献   

16.
The use of sourdough improves the quality and increases the shelf life of bread. The positive effects are associated with metabolites produced by lactic acid bacteria (LAB) during sourdough fermentation, including organic acids, exopolysaccharides (EPS), and enzymes. EPS formed during sourdough fermentation by glycansucrase activity from sucrose influence the viscoelastic properties of the dough and beneficially affect the texture and shelf life (in particular, starch retrogradation) of bread. Accordingly, EPS have the potential to replace hydrocolloids currently used as bread improvers and meet so the consumer demands for a reduced use of food additives. In this review, the current knowledge about the functional aspects of EPS formation by sourdough LAB especially in baking applications is summarized.  相似文献   

17.
Sourdough is a type of dough fermented by yeast and lactic acid bacteria (LAB) used as sponge dough in bread making. Sourdough may have four classifications according to the fermentation type and the technological process used. On sourdough type I, the fermentation of yeasts and LAB present in the flour occurs spontaneously whereas in type II, fermentation occurs after the inoculation of a starter culture. Type III is simply type II sourdough dehydrated and type IV is a mixture of type I and type II sourdough, produced on laboratory scale. With LAB’s growth during fermentation, pH decreases with subsequent hydrolysis of starch and protein, favoring the growth of yeasts. The yeast in turn, releases amino acids during autolysis, contributing to the growth of LAB. Due to this synergistic growth of LAB and yeasts, the products obtained from sourdough show more concentration of flavor, more elastic dough, and a longer shelf life than bread fermented only by yeast. Although, the benefits of this technology, using sourdough, is present just in a few countries, where it is also possible to obtain the dehydrated sourdough starters, for domestic use, in local supermarkets. Due to its fermentative process complexity, this paper presents updated information about the fabrication process of sourdough, main factors affecting this process, benefits of sourdough use for bakery products, and the varieties of dehydrated sourdough commercially available throughout the world.  相似文献   

18.
The use of exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) is promising in sourdough fermentation. However, the knowledge of the effects of various species of LAB on steamed bread making remains limited. In this study, the effects of two LAB with high EPS-producing capacity, namely Weissella cibaria L32 and Lactobacillus brevis L17 on dough fermentation and steamed bread quality were estimated. The addition of these two LAB strains significantly increased the titratable acidity and protease activity during the dough fermentation, especially L. brevis L17. Although the in situ EPS synthesised by LAB could improve the steamed bread quality, excessive acidification of L. brevis L17 would still increase the protease activity and thus destroy its gluten network structure. As a result, the steamed bread fermented with L. brevis L17 had the lowest specific volume and hardest texture in comparison with the steamed bread fermented with W. cibaria L32 and with added EPS produced by W. cibaria L32 and L. brevis L17. These results indicated that different EPS-producing LAB exhibited distinctive dough fermentation characteristics, and the in situ EPS-producing W. cibaria L32 could improve steamed bread quality, which confirmed its potential application in steamed bread making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号