首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
Ce~(3+), Tb~(3+) doped orthorhombic phases of KLu_2F_7 microcrystals with hexagonal disk morphology were synthesized by a hydrothermal method. Enhanced emissions of Tb~(3+) were observed in the Ce~(3+)/Tb~(3+) co-doped KLu_2F_7 sample compared to the Tb~(3+) single-doped KLu_2F_7. The energy transfer efficiency from Ce~(3+) to Tb~(3+) was calculated by the photoluminescence intensity in the Ce~(3+)/Tb~(3+) co-doped KLu_2F_7 samples. The average separations between Ce~(3+) and Tb~(3+) were calculated and the critical distance was 0.922 nm estimated by method of concentration quenching. The theoretical calculation proved the results. The theoretical analysis also suggested that the energy transfer from Ce~(3+) to Tb~(3+) in the KLu_2F_7 occurred predominantly via the dipole-quadrupole interaction. The KLu_2F_7 should be good host materials for emitters.  相似文献   

2.
In order to sensitize the luminescence of Eu3+ ions in heavy metal glass,zinc lead borate glass samples containing various concentrations of Eu3+ and Tb3+ ions were prepared to study the Tb3+ to Eu3+ non-radiative energy transfer phenomena.Energy level structures of Tb3+ and Eu3+ ions were plotted to show the excitation and energy transfer routes.Efficient energy transfer from Tb3+ to Eu3+ was observed and studied qualitatively in terms of doping concentrations.The sensitization turned out to be less effective than expected.Further studies to characterize the oxidation of Tb3+ into tetravalent state and to examine the mechanism of energy transfer are proposed.  相似文献   

3.
Organicelectroluminescence (OEL)hasbeenex tensivelystudiedbecauseoftheirpotentialapplicationinflatpaneldisplayssincethefirsttwo layerOELde vicewithhighefficiencyandluminancewasfabricatedin 1987[1~ 3] .Rareearth (RE)metalcomplexeshavesomegoodcharacteristics ,suchasextremelynarrowe missionbandsandhighinternalquantumefficiencies ,whicharesuitableforuseastheemissionmaterialsinOEL[4 ] .Tb3+complexwasfirstintroducedintoOELdevices ,andsharpgreenemissionfromTb3+ionhasbeenobserved[5] .Sincethen …  相似文献   

4.
A blue phosphor Ca2PO4Cl:Eu2+(CAP:Eu2+) was synthesized by solid state reaction.The Ca2PO4Cl:Eu2+ exhibited high quantum efficiency and excellent thermal stability.The luminescent intensity of Ca2PO4Cl:Eu2+ was found to be 128% under excitation at 380 nm,149% under 400 nm,and 247% under 420 nm as high as that of BaMgAl10O17:Eu2+.The optimal doping concentration was observed to 11 mol.% of CAP:Eu2+.The energy transfer between Eu2+ ions in CAP were occurred via electric multipolar interaction,and the critical transfer distance was estimated to be 1.26 nm.A mixture of blue-emitting Ca2PO4Cl:Eu2+,green-emitting(Ba,Sr)2SiO4:Eu2+ and red-emitting CaAlSiN3:Eu2+ phosphors were selected in conjunction with 400 nm chip to fabricate white LED devices.The average color-rendering index Ra and correlated color temperature(Tc) of the white LEDs were found to be 93.4 and 4590 K,respectively.The results indicated that it was a promising candidate as a blue-emitting phosphor for the near-UV white light-emitting diodes.  相似文献   

5.
Tm~(3+)-doped transparent oxyfluoride glass ceramics containing BaYb_xY((1-x))F_5 nanocrystals were prepared via high temperature solid phase melting method,of which up-conversion emission is achieved by the Yb~(3+)-mediated energy transfer process.The required photon number of Tm~(3+)ions emissions in BaYb_xY_((1-x))F_5 nanocrystals was calculated through the luminescence spectra,revealing the strong dependence of energy transfer mechanism on Yb~(3+)ions concentration.Meanwhile,based on the fluore scence intensity ratio technology,the effect of different energy transfer mechanism on the temperature sensitivity was investigated by the temperature-dependent luminescence intensity of thermally coupled energy levels of Tm~(3+):~1G_4(a),~1G_4(b).The obtained sensitivity decreases with the increase of Yb~(3+)ions content,which is mainly attributed to the changes in photon absorption process of Tm~(3+):~1G_4(b).  相似文献   

6.
Luminescence Properties of Eu~(2 ) and Mn~(2 ) Co-Doped Ca_8Mg(SiO_4)_4Cl_2   总被引:5,自引:1,他引:5  
The green phosphor for white LED, Ca8Mg(SiO4)4Cl2∶Eu2+, Mn2+, was synthesized by high temperature solid state reaction under reducing atmosphere. During the process of the phosphor prepared, the excess CaCl2 can improve the intensity of emission. The experimental results indicate that there is an effective energy transfer from Eu2+ to Mn2+in Ca8Mg(SiO4)4Cl2 host. This kind of energy transfer may be due to resonance transfer, and this energy transfer is limited.  相似文献   

7.
Ce3+,Eu3+ and Tb3+ singly doped and Ce3+/Eu3+ and Ce3+/Tb3+ co-doped zinc phosphate glasses were prepared by sintering P2O5,ZnO,Ce2(C2O4)3·10H2O and Eu2O3/Tb4O7 mixtures at 1200 °C in the air for 2 h and then annealing at 450 °C for 10 h.The obtained glasses were homogeneous and transparent.The glasses without Ce3+ were colorless and those with Ce3+ showed slightly yellow.The singly doped glasses showed strong emissions and excitations from doped trivalent rare earth ions.Strong energy transfer from Ce3+ to Tb3+ was observed for Ce3+/Tb3+ coped samples.There were also some very weak evidences for the energy transfer from Ce3+ to Eu3+.  相似文献   

8.
To convert ultraviolet(UV) light into near-infrared(NIR) light in phosphors is demanded for the development of solar cells.A series of NaYF_4:Nd~(3+),Yb~(3+) white powder samples were prepared via the hydrothermal method.The crystal structure and photoluminescence properties of the samples were carefully studied using X-ray diffractometry(XRD) and photoluminescence spectra.The excitation and emission spectra of NaYF_4:Nd~(3+),Yb~(3+) samples and the luminescence decay curves of Nd~(3+) and Yb~(3+) revealed an efficient energy transfer process from Nd~(3+) to Yb~(3+).This process resulted in the Yb~(3+) NIR fluorescent emission at 980 nm.Moreover,the lifetime of the Nd~(3+4)F_(3/2) level decreased with the increase of Yb~(3+) doping concentration.The build-up time of the decay curves of the Yb~(3+2)F_(5/2) level further verified the energy transfer process.Meanwhile,energy transfer efficiency based on different Yb~(3+) doping concentrations was achieved.  相似文献   

9.
Sinceaza crownethershowsspecialcoordinationpropertiestotransitionmetalandheavymetalions[1,2 ] ,therearemanyreportsofthecomplexesinhost guestchemistry ,molecularrecognition[3 ,4] andionophoreinmembranetransportation[5] ,butthereislittlereportontheirrareearthscomplexesandthefluorescenceaboutthecomplexes[6] ,andthefluorescenceintensityoftheircomplexesarenotverystrong .Weinsetbenzoylgroupintothemacrocycle ,expectingthatitsrareearthscomplexeshavebetterfluorescenceproperties .Inthispaperthesynthesis…  相似文献   

10.
Phosphors of BaLiF3 doped with Eu or/and Ce were solvothermally prepared at 200°C for 5d and characterized by means of X-ray powder diffraction (XRD) and environment scanning electron microscopy (ESEM). The excitation and emission spectra of the rare earth ions doped BaLiF3 were measured by fluorescence spectroscopy and the effects of Ce3+ ions on the luminescence of Eu2+ ions were investigated. In the codoped Eu2+ and Ce3+ system, the emission intensity of Eu2+ ion gradually increased with the Ce3+ concentration increasing, and the enhancement of Eu2+ fluorescence was due to efficient energy transfer from Ce3+ to Eu2+ in the host.  相似文献   

11.
LiYF_4 nanocrystals with tetragonal structure were adopted as the host materials for the phosphors and scintillators owing to the low phonon energy and high optical transparency. LiYF_4:Ln~(3+)(Ce~(3+),Eu~(3+)) nanocrystals were fabricated by solvothermal method. Under UV excitation, they could emit visible light. In order to improve the luminescence intensity, the method of co-doping LiYF_4 nanocrystals with Sc was adopted. Sc~(3+) ions could reduce the lattice expansion caused by the doping of Ce~(3+) or Eu~(3+) whose ionic radius was larger than Y~(3+). Crystal structure of Li(Y,Sc)F_4:Ln~(3+) kept much more stable and the luminescence intensity could be significantly enhanced when the concentration of Sc was a moderate value. Thermoluminescence was employed to analyze the electron traps in Li(Y,Sc)F_4:Ce~(3+). Results suggested that the suppression of the generation of electron traps with the co-doping of Sc contributed to the enhancement of luminescence intensity of LiYF_4:Ce~(3+).  相似文献   

12.
Four new complexes RE(ABMF)2AA (RE=Sm, Eu, Tb, Dy) were synthesized by the reaction of RECl3·6H2O with acrylic acid (HAA) and 1-(2-furyl)-3-phenyl-1,3-propanedione (ABMF). The copolymerization of the rare earth complexes with methyl methacrylate was studied by using 2,2-azobis-isobutyronitrile as an initiator. The composition and structure of the four complexes were characterized by elemental analysis, UV-vis and FTIR. The glass transition temperature and molecular weight of the copolymers were determined. Photoluminescent measurement showed that ligand ABMF could efficiently transfer the energy to Sm3+ and Eu3+ ions in the complexes and sensitize the luminescence of the rare earth ions, but could not sensitize Tb3+ and Dy3+ ions. As a result, both Sm3+ and Eu3+ complexes emitted the characteristic fluorescence of Sm3+ and Eu3+ ions due to the f-f transitions. The four copolymers could emit strong fluorescence of the rare earth ions.  相似文献   

13.
Trivalent rare-earth ions (La3+,Pr3+,Nd3+,Sm3+,Gd3+,Tb3+,Dy3+,Ho3+,Er3+,Tm3+,and Yb3+) were investigated as the codoped auxiliary sensitizer for the electron trapping materials SrS:Eu2+ in order to enhance the fluorescence properties.It was found that Sm3+ and Tb3+ had the best photoluminescence stimulated luminescence (PSL) effect among the selected trivalent rare-earth ions.All the SrS:Eu2+ samples doped by different trivalent rare-earth ions could be stimulated by 980 nm laser after being exposed to the conventional sunlight,and they emitted PSL with the peak located at 615 nm.The result also indicated that some co-doped rare earth ions could increase fluorescence intensities of the traditional electron trapping materials SrS:Eu2+.  相似文献   

14.
BaAl12O19:Tb,Ce phosphors were prepared by sol-gel technique,the crystalline structures of samples characterized by XRD,and the luminescence properties and energy transfer between Ce3+ and Tb3+ were investigated.The results indicated that the emission intensity and the excitation wavelength range of Tb3+ increased when Ce3+ was doped.It demonstrated that the Ce3+ added in the BaAl12O19:Tb could deliver energy to Tb3+,and Ce3+ was not luminous by itself.The relative emission intensity of Tb3+ at wavelength of 548 nm was the strongest by Tb3+/Ce3+ ratio of 2:1,when excited at 310 nm,which was the characteristic adsorption wavelength of Ce3+.  相似文献   

15.
Tb3+ and Yb3+ codoped Lu2O3 nanophosphors were synthesized by the reverse-strike co-precipitation method. The obtained Lu2O3:Tb3+,Yb3+ nanophosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectra. The XRD results showed that all the prepared nanophosphors could be readily indexed to pure cubic phase of Lu2O3 and indicated good crystallinity. The Tb3+→Yb3+ energy transfer mechanisms in the UV-blue region in Lu2O3 nanophosphors were investigated. The experimental results showed that the strong visible emission around 543 nm from Tb3+ (5D4→7F5) and near-infrared (NIR) emission around 973 nm from Yb3+ (2F5/2→2F7/2) of Lu2O3:Tb3+,Yb3+ nanophosphors were observed under ultraviolet light excitation, respectively. Tb3+ could be effectively excited up to its 4f75d1 state and relaxed down to the 5D4 level, from which the energy was transferred cooperatively to two neighboring Yb3+. The Yb3+ concentration dependent luminescent properties and lifetimes of both the visible and NIR emissions were also studied. The lifetime of the visible emission decreased with the increase of Yb3+ concentration, verifying the efficient energy transfer from the Tb3+ to the Yb3+. Cooperative energy transfer (CET) from Tb3+ to Yb3+ was discussed as a possible mechanism for the near-infrared emission. When doped concentrations were 1 mol.% Tb3+ and 2 mol.% Yb3+, the intensity of NIR emission was the strongest.  相似文献   

16.
由高温固相反应首次合成Li2(Gd1-xEux)4(MoO4)7(0相似文献   

17.
S100 beta is a member of a group of low-molecular weight acidic calcium binding proteins widely distributed in the vertebrate nervous system containing two helix-loop-helix calcium binding motifs (sites I and II). In addition, S100 beta also has auxiliary Zn2+ binding sites that are distinct from the Ca2+ binding sites. Luminescence spectroscopy using Eu3+ and Tb3+ as spectroscopic probes for Ca2+ is used to characterize the Ca2+ binding sites of this protein. Eu3+-bound S100 beta shows two distinct Eu3+ binding environments from both the excitation spectrum and Eu3+ excited state lifetimes. Eu3+ bound to the classical EF hand site II has a Kd of 660 +/- 20 nM, whereas the dissociation constant for the pseudo-EF hand site I is significantly weaker. Lifetimes in H2O and D2O lead to the finding that there are four water molecules coordinated to the Eu3+ in the weakly binding site I and two water molecules to the tightly binding site II. Site II in S100 beta expectedly is very similar to high-affinity Ln3+ binding domains I and II in calmodulin. Eu3+ luminescence experiments with Zn2+-loaded S100 beta show that the lifetime for Eu3+ in site I in Zn2+-loaded S100 beta is significantly different than that in the absence of Zn2+. Tyrosine-17-sensitized Tb3+ luminescence experiments indicate that the Tb3+ occupying the proximal weaker binding site I is sensitized, whereas Tb3+ in site II is not. The distance between sites I and II (15.0 +/- 0.4 A) in S100 beta was determined from Forster-type energy transfer in D2O solutions containing bound Eu3+ donor and Nd3+ acceptor ions. For Zn2+-S100 beta, the intersite distance is reduced to 13 +/- 0.3 A. Location of histidine-15 close to pseudo-EF site I suggests that Zn2+ binding likely changes the conformation of this site, causing a reduction of the intersite distance by approximately 2 A.  相似文献   

18.
Snakevenomscontaincomplexproteinswhichpossessvariousbiologicalactivities ,in cludingaclassthataffectscoagulationsystemwithcoagulantoranticoagulantactivities .Ananticoagulantfactor (ACF)waspreviouslyiso latedfromthevenomofAgkistrodonacutusfromsouthernAnhu…  相似文献   

19.
Eu2+/Sm3+co-doped dual-emitting Sr4La(PO4)3O phosphors were synthesized through a convenient high temperature solid state reaction in reductive atmosphere.The structure,luminescence,energy transfer and temperature-dependent luminescence properties of Eu2+/Sm3+co-doped Sr4La(PO4)3O phosphors were researched and analyzed in detail.The blue emission of Eu2+and the red emission of Sm3+can work together as FIR signals.Based on the different response characteristics of these two ion emissions to temperature,Sr4La(PO4)3O:Eu2+/Sm^(3+)phosphor achieves the relative sensitivity of0.48384%/K and a wide range of temperature measurements from room temperature to 573 K.The results reveal that the Sr4La(PO4)3O:Eu2+/Sm3+phosphor has application prospect in the field of high temperature optical thermometry.The energy transfer mechanism is proved to be the dipole-dipole interaction between Eu2+and Sm3+ions.  相似文献   

20.
SrGdGa3 O7belongstothelargefamilieswhosegeneralchemicalformulaisAMM′3 O7(A =Ca ,Sr ,Ba ;M =La ,Gd ,Y ;M′ =Al,Ga) .Thesecom poundshavemelilitestructure .Structuralinvestiga tionsindicatethatSrGdGa3 O7formstetragonalcrystalswithspacegroupP 4 2 1m .Theunit…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号