首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
采用间歇式水热预处理方法,考察了不同水热预处理温度和处理时间对玉米秸秆主要成分变化的影响以及水热预处理后的纤维素酶解效率。在180~220℃,10~25 min范围内,随温度升高和时间延长预处理后半纤维素移除率和纤维素损失率也随之增大,但木质素质量并未减少反而有所增加。在210℃,25 min时得到最大半纤维素移除率为86.0%。以半纤维素移除率、木质素移除率和纤维素损失率为因变量,处理温度和处理时间为自变量通过多元线性回归分析或二次方程(多元线性回归方程拟合度不佳时)拟合分别获得回归模型。模型显示处理温度和处理时间对三者均具有显著影响。分析敏感性显示处理温度对三种因变量的影响均大于处理时间。经210℃,20 min处理后,纤维素酶解率最高为76.2%,继续提高处理温度和延长处理时间半纤维素移除率提高,但纤维素酶解率下降。  相似文献   

2.
植物纤维素的限制性酶解特性   总被引:5,自引:0,他引:5  
探讨了利用纤维素酶使纤维素棉浆粕限制性降解过程,得出优化反应条件如下:纤维素的酶解温度为50℃,纤维素酶解体系Ph值为4.8,酶解时间为24 h,底物与酶液的质量比为1:(6~10).  相似文献   

3.
本文针对来自古菌的纤维素酶做了一定的研究。从酶解温度、PH值、酶用量及酶解应时间,通过DNS法,考查了四个因素对棉纤维降解的影响。结果表明:这种纤维素酶在pH值为10,酶用量为1.5 m L/g,酶解温度为60℃,酶解时间为1.5 h时对棉纤维的降解效果最佳。  相似文献   

4.
采用纤维素酶降解经氢氧化钠预处理过的醋酯纤维,考察了pH值、温度、酶用量、处理时间以及助剂对酶解效果的影响,并初步探索了超声波对氢氧化钠预处理效果的影响。结果表明,氢氧化钠预处理后,使用纤维素酶降解醋酯纤维的工艺条件为:pH值4.5,温度55℃,酶用量3 mL/L,反应时间4 h;使用超声波辅助氢氧化钠预处理后,醋酯纤维的取代度较单一碱处理略有降低,酶解活性提高;在纤维素酶催化水解反应中,加入非离子表面活性剂可以提高醋酯纤维的酶解效果。  相似文献   

5.
采用酶法优化提取金银花中的绿原酸,考察纤维素酶的用量、酶解时间、酶解温度及回流提取温度对绿原酸含量的影响;用高效液相色谱法(HPLC)测定绿原酸含量,用纤维素酶法提取金银花可提高绿原酸得率。酶法提取最佳条件为:加入纤维素3.0%,在46℃下酶解4h,再在56℃下浸提1h,其绿原酸含量为3.57%。  相似文献   

6.
研究了醋酸预处理对稻草主要化学成分及酶水解糖化效率的影响。在160℃下以不同的醋酸用量(0~4%)对稻草进行处理,预处理后稻草的Klason木质素含量基本保持不变,约60%的酸溶木质素被脱除;灰分含量(质量分数)约下降30%,灰分中SiO2则几乎全部保留在预处理浆料中。预处理醋酸用量的增加对酸溶木质素和灰分含量的变化均无显著影响。预处理后高聚糖的降解程度随醋酸用量的增加而上升,其中半纤维素的降解程度尤为显著,阿拉伯聚糖、半乳聚糖大量溶出。对经醋酸预处理稻草的酶水解研究表明,预处理中醋酸用量的增加无助于酶水解液中还原糖得率的提高。稻草于160℃下经不添加醋酸的自水解预处理后,其酶解还原糖得率均高于经醋酸预处理的稻草,当纤维素酶用量为40 FPU/g(对底物)时,稻草中高聚糖的酶水解转化效率最高,葡聚糖、木聚糖的转化率分别为67.8%和45.3%,总糖转化率为58.8%。  相似文献   

7.
采用酸性亚硫酸盐法预处理棉杆进行生物质转化,研究了硫酸用量、亚硫酸氢钠用量、预处理温度和保温时间等对棉杆底物酶水解效率和棉杆组分溶出的影响,并研究了棉杆酶水解过程中添加木素磺酸盐对棉杆底物酶水解效率的影响。结果表明,硫酸用量的增加可以明显提高半纤维素的降解溶出,亚硫酸氢钠用量的提高可以增加木素的磺化溶出,一定的预处理温度和保温时间是必要的,但过高的预处理温度和过长的保温时间对棉杆酶解效率没有益处。综合考虑,酸性亚硫酸盐预处理棉杆的最佳条件为:硫酸用量2.2%,亚硫酸氢钠用量8.0%,预处理温度170℃,保温时间40 min。纤维素酶用量为15 FPU/g(绝干底物)时,棉杆底物酶水解糖化率为83.9%。只添加商品木素磺酸盐,添加量为3.0%(对绝干底物),棉杆底物纤维酶水解转化率达到93.4%,基本达到工业生产的标准;黑液可以取代部分商品木素磺酸盐,但全部取代,效果略差。  相似文献   

8.
酶法降解壳聚糖工艺研究   总被引:1,自引:0,他引:1  
采用非专一性酶(溶菌酶、纤维素酶)和专一性酶(壳聚糖酶)降解壳聚糖,探讨了不同条件对壳聚糖降解的影响.结果表明,溶菌酶降解壳聚糖的最佳条件为反应时间3.0 h、反应温度50℃、pH值4.0、酶用量40 U·mL-1;纤维素酶降解壳聚糖的最佳条件为反应时间1.5 h、反应温度55℃、pH值5.5、酶用量40 U·mL-1;壳聚糖酶降解壳聚糖的最佳条件为反应时间2.0 h、反应温度45℃、pH值5.0、酶用量30 U·mL-1.对壳聚糖酶酶解产物进行HPLC分析,发现得到了分子量分布较窄的壳寡糖.  相似文献   

9.
对SFP-AQ法(亚硫酸钠和甲醛―蒽醌)预处理麦秸秆酶解葡萄糖得率进行了研究。结果表明:葡萄糖得率随着预处理中Na2SO3用量的增加先升高后降低,在12%时葡萄糖得率最高;葡萄糖得率随着酶用量的增加而迅速升高,当酶用量超过20 FPU/g时,提高缓慢;蒸煮最高温度和保温时间对葡萄糖得率的影响不明显。较适宜的预处理和酶解条件分别为:蒸煮最高温度150℃,保温时间1 h,Na2SO3用量为12%,纤维素酶、木聚糖酶、β-纤维二糖酶三种复合酶用量为20 FPU/g。此时,葡萄糖得率可达到31.7%,酶解葡萄糖对原料中葡萄糖的转化率为91.6%。  相似文献   

10.
自水解预处理对稻草化学成分及酶解性能的影响   总被引:4,自引:3,他引:1  
研究了自水解处理对稻草秸秆主要化学成分及酶解糖化效率的影响。结果显示:在100~160℃下对稻草进行自水解预处理,酸溶木质素的脱除程度随着自水解温度的升高而增大,而Klason木质素含量几乎没有变化,几乎全部SiO2仍然保留在预处理后草片中;稻草高聚糖的降解程度随着自水解温度的升高而增加,但由于自水解液酸性较弱,大量高聚糖仍保留在草片中;自水解预处理有利于促进稻草的酶解糖化,随着自水解预处理温度的升高和酶用量的增大,酶解液中各种聚糖得率均有不同程度的提高,但自水解温度的影响显得更为重要;经160℃自水解预处理的稻草在40 FPU/g混合酶用量下,葡聚糖和木聚糖的总转化率约为68%和45%,总糖转化率近60%。  相似文献   

11.
Scentless plant bugs (Heteroptera: Rhopalidae) are so named because adults of the Serinethinae have vestigial metathoracic scent glands. Serinethines are seed predators of Sapindales, especially Sapindaceae that produce toxic cyanolipids. In two serinethine species whose ranges extend into the southern United States,Jadera haematoloma andJ. sanguinolenta, sequestration of host cyanolipids as glucosides renders these gregarious, aposematic insects unpalatable to a variety of predators. The blood glucoside profile and cyanogenesis ofJadera varies depending on the cyanolipid chemistry of hosts, and adults and larvae fed golden rain tree seeds (Koelreuteria paniculata) excrete the volatile lactone, 4-methyl-2(5H)-furanone, to which they are attracted.Jadera fed balloon vine seeds (Cardiospermum spp.) do not excrete the attractive lactone. Loss of the usual heteropteran defensive glands in serinethines may have coevolved with host specificity on toxic plants, and the orientation ofJadera to a volatile excretory product could be an adaptive response to save time.Mention of a commercial product does not consititute an endorsement by the USDA.  相似文献   

12.
13.
Vismiones and ferruginins, representatives of a new class of lypophilic anthranoids from the genusVismia were found to inhibit feeding in larvae of species ofSpodoptera, Heliothis, and inLocusta migratoria.  相似文献   

14.
2008~2009年世界塑料工业进展   总被引:4,自引:1,他引:3  
收集了2008年7月~2009年6月世界塑料工业的相关资料,介绍了2008~2009年国外塑料工业的发展情况,提供了世界塑料产量、消费量及全球各类树脂的需求量及产能情况。按通用热塑性树脂(聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、ABS树脂)、工程塑料(尼龙、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚)、特种工程塑料(聚苯硫醚、液晶聚合物、聚醚醚酮)、通用热固性树脂(酚醛、聚氨酯、环氧树脂、不饱和聚酯树脂)不同品种的顺序,对树脂的产量、消费量、供需状况及合成工艺、产品应用开发、树脂品种的延伸及应用的进一步扩展等技术作了详细介绍。  相似文献   

15.
It is well established that a wide range of drugs of abuse acutely boost the signaling of the sympathetic nervous system and the hypothalamic–pituitary–adrenal (HPA) axis, where norepinephrine and epinephrine are major output molecules. This stimulatory effect is accompanied by such symptoms as elevated heart rate and blood pressure, more rapid breathing, increased body temperature and sweating, and pupillary dilation, as well as the intoxicating or euphoric subjective properties of the drug. While many drugs of abuse are thought to achieve their intoxicating effects by modulating the monoaminergic neurotransmitter systems (i.e., serotonin, norepinephrine, dopamine) by binding to these receptors or otherwise affecting their synaptic signaling, this paper puts forth the hypothesis that many of these drugs are actually acutely converted to catecholamines (dopamine, norepinephrine, epinephrine) in vivo, in addition to transformation to their known metabolites. In this manner, a range of stimulants, opioids, and psychedelics (as well as alcohol) may partially achieve their intoxicating properties, as well as side effects, due to this putative transformation to catecholamines. If this hypothesis is correct, it would alter our understanding of the basic biosynthetic pathways for generating these important signaling molecules, while also modifying our view of the neural substrates underlying substance abuse and dependence, including psychological stress-induced relapse. Importantly, there is a direct way to test the overarching hypothesis: administer (either centrally or peripherally) stable isotope versions of these drugs to model organisms such as rodents (or even to humans) and then use liquid chromatography-mass spectrometry to determine if the labeled drug is converted to labeled catecholamines in brain, blood plasma, or urine samples.  相似文献   

16.
17.
18.
19.
20.
Halyomorpha halys (Stål) (Pentatomidae), called the brown marmorated stink bug (BMSB), is a newly invasive species in the eastern USA that is rapidly spreading from the original point of establishment in Allentown, PA. In its native range, the BMSB is reportedly attracted to methyl (E,E,Z)-2,4,6-decatrienoate, the male-produced pheromone of another pentatomid common in eastern Asia, Plautia stali Scott. In North America, Thyanta spp. are the only pentatomids known to produce methyl 2,4,6-decatrienoate [the (E,Z,Z)-isomer] as part of their pheromones. Methyl 2,4,6-decatrienoates were field-tested in Maryland to monitor the spread of the BMSB and to explore the possibility that Thyanta spp. are an alternate host for parasitic tachinid flies that use stink bug pheromones as host-finding kairomones. Here we report the first captures of adult and nymph BMSBs in traps baited with methyl (E,E,Z)-2,4,6-decatrienoate in central Maryland and present data verifying that the tachinid, Euclytia flava (Townsend), exploits methyl (E,Z,Z)-2,4,6-decatrienoate as a kairomone. We also report the unexpected finding that various isomers of methyl 2,4,6-decatrienoate attract Acrosternum hilare (Say), although this bug apparently does not produce methyl decatrienoates. Other stink bugs and tachinids native to North America were also attracted to methyl 2,4,6-decatrienoates. These data indicate there are Heteroptera in North America in addition to Thyanta spp. that probably use methyl 2,4,6-decatrienoates as pheromones. The evidence that some pentatomids exploit the pheromones of other true bugs as kairomones to find food or to congregate as a passive defense against tachinid parasitism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号