首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过载体的制备、助剂及活性组分的加入,最终得到担载型Ni O·La_2O_3·Mg O/Al_2O_3甲烷化催化剂。在10 m L两段反应装置中进行了甲烷化催化剂1000 h稳定性评价试验,反应条件为:反应温度610℃(一段)和313℃(二段),反应压力3.0 MPa,平均空速6500 h~(-1),原料气H_2/CO=3.03。试验结果表明催化剂活性基本没有下降,CO转化率平均为99.97%,CH_4选择性平均为98.44%。  相似文献   

2.
以Al_2O_3为载体,La、Ce或Zr为改性剂,Ni作为活性组分,制备了一系列改性的Ni/Al_2O_3催化剂,并通过蒽醌加氢反应系统地评价了催化剂的反应活性,发现La、Ce改性的催化剂,其加氢活性得到显著的增加。活性最好的催化剂为La_5-Ni_(40)/Al_2O_3,氢效为3.96g·L~(-1)。采用XRD、H_2-TPR、BET等方法对La_5-Ni_(40)/Al_2O_3的表面结构进行了一定的表征分析,发现加入La元素能促进活性组分Ni的分散,提升了其加氢性能。实验得出催化剂的最佳焙烧温度和还原温度分别为600℃和550℃,既保证了催化剂具有适当的孔道结构,同时也改善了活性组分Ni的分散度。  相似文献   

3.
马庆丰  李凝  吕义浩  刘伟 《工业催化》2010,18(10):33-36
采用溶胶-凝胶法制备了Al_2O_3、ZrO_2和ZrO_2/Al_2O_3载体,采用浸渍法制备了NiO/Al_2O_3、NiO/ZrO_2和NiO/ZrO_2/Al_2O_3催化剂,采用H_2-TPR、NH_3-TPD和原位红外等技术对催化剂的还原性能、表面酸特性、α-蒎烯的吸附性及比表面积等进行了表征。结果表明,负载型ZrO_2/Al_2O_3复合载体与活性物种形成较强的相互作用,稳定活性中心,复合载体Ni催化剂表面酸强度介于Ni/ZrO_2和Ni/Al_2O_3之间,α-蒎烯能与Ni/ZrO_2/Al_2O_3催化剂形成适宜化学吸附态。在α-蒎烯加氢反应中,Ni/ZrO_2/Al_2O_3催化剂表现出较好的催化活性和选择性,α-蒎烯转化率为84%,蒎烷选择性为83%。  相似文献   

4.
Ni/Al_2O_3催化剂是甲烷二氧化碳重整反应制取合成气研究最多、最具应用潜力的一种催化剂。通过对催化剂进行CO_2-TPD研究,考察还原态Ni/Al_2O_3催化剂的CO_2脱附特性。结果表明,浸渍法制备的Ni/Al_2O_3催化剂CO_2脱附曲线呈现双峰,分别在(60~65)℃和(350~380)℃出现高低温两个活性位;高温CO_2吸附量为3.0 cm~3·g~(-1),低温CO_2吸附量为24.0 cm~3·g~(-1)。催化剂的CO_2吸附量与其Ni含量无关。考察选用不同载体的CO_2脱附行为,发现以Al_2O_3为载体的催化剂CO_2吸附量是MgO和SiO_2为载体催化剂的2~4倍,以TiO_2为载体的催化剂几乎不吸附CO_2。  相似文献   

5.
《应用化工》2022,(12):2314-2319
采用机械化学一步法、机械化学-浸渍两步法和浸渍法(以普通商业Al_2O_3为载体)分别制备了Ni/Al_2O_3-J、Ni/Al_2O_3-Z和Ni/Al_2O_3-C三个催化剂。通过XRD、H_2-TPR、N_2吸附-脱附和SEM等进行表征,并在浆态床上对催化剂的合成气甲烷化性能进行了测试。结果表明,相对于普通商业Al2O3,采用机械化学法合成的氧化铝比表面积大,孔径分布集中,其负载Ni制备的催化剂甲烷化性能较高。采用机械化学一步法合成的催化剂Ni/Al_2O_3-J的表面形貌规整,具有较好的Ni分散性,比表面积较大(266.8 m2/g)。在压力1.0 MPa、温度300℃、H_2∶CO=3.1∶1和空速1 200 mL/(g·h)条件下,平均CO转化率、CH_4选择性和收率分别高达98.6%,96.0%和94.7%,高于其它方法制备的催化剂。  相似文献   

6.
《应用化工》2017,(12):2314-2319
采用机械化学一步法、机械化学-浸渍两步法和浸渍法(以普通商业Al_2O_3为载体)分别制备了Ni/Al_2O_3-J、Ni/Al_2O_3-Z和Ni/Al_2O_3-C三个催化剂。通过XRD、H_2-TPR、N_2吸附-脱附和SEM等进行表征,并在浆态床上对催化剂的合成气甲烷化性能进行了测试。结果表明,相对于普通商业Al2O3,采用机械化学法合成的氧化铝比表面积大,孔径分布集中,其负载Ni制备的催化剂甲烷化性能较高。采用机械化学一步法合成的催化剂Ni/Al_2O_3-J的表面形貌规整,具有较好的Ni分散性,比表面积较大(266.8 m~2/g)。在压力1.0 MPa、温度300℃、H_2∶CO=3.1∶1和空速1 200 mL/(g·h)条件下,平均CO转化率、CH_4选择性和收率分别高达98.6%,96.0%和94.7%,高于其它方法制备的催化剂。  相似文献   

7.
《化学工程》2021,49(7)
将稀土化合物CeO_2和La_2O_2CO_3分别与MgO载体复合负载Ni,制备Ni/MgO-La_2O_2CO_3(NML)和Ni/MgO-CeO_2(NMC)催化剂,用于催化乙醇水蒸气重整制氢。通过XRD研究负载催化的晶相,程序升温还原(TPR)对催化剂的综合性能进行分析。结果表明:稀土化合物复合的NMC,NML能明显提高Ni/MgO(NM)的低温乙醇转化率,350℃时,NM的乙醇转化率为78.3%,而此时NML,NMC的乙醇转化率却已接近100%,400—500℃范围内,NMC和NML明显提高了NM的H_2选择性,CO_2选择性也有所提高,同时降低了NM的CO,CH_4选择性,其中NMC的H_2选择性高于NML,而CO_2,CO,CH_4选择性却均低于NML,综合考虑乙醇转化率,NMC和NML能明显提高NM的综合催化性能,其中MgO-CeO_2复合载体负载Ni(NMC)对乙醇重整制氢的催化效果最好。  相似文献   

8.
以Ni(NO_3)_2·6H_2O、Al(NO_3)_3·9H_2O和Na_2CO_3为原料,采用共沉淀法制备了不同摩尔比的Ni/Al_2O_3催化剂。并用单点BET、XRD、TPR、TPSR以及化学吸附方法对催化剂的结构及氨分解反应的催化活性进行表征。结果表明,与Al_2O_3载体复合的NiO材料的催化活性明显高于纯NiO的催化活性。镍的摩尔分数为20%相对应的NiAl催化剂的Ni的分散度最大并且催化活性最高。当9. 7%NH_3/He混合气流速控制在10 m L/min且反应温度为600℃时,该材料的氨转化率为96. 1%。  相似文献   

9.
采用浸渍法制备了Ni/Ce_xGd_(1-x)O_y(x=0.1、0.5、0.9)系列催化剂,用N_2物理吸附、X-射线衍射、H_2程序升温还原、H_2脉冲化学吸附和程序升温氧化等技术表征了这些催化剂的结构和性质,并考察了这些催化剂催化甘油水蒸气重整制氢的反应性能。结果表明:这些催化剂均表现了良好的活性,载体中Ce/Gd的不同摩尔比能够影响催化剂活性,当铈钆比达到9∶1,催化剂催化效果达到最佳。通过分析反应温度对催化剂稳定性、产物选择性、甘油转化率产生的影响,发现500℃时,Ni/Ce_(0.9)Gd_(0.1)O_(1.95)催化剂上甘油转化率可达到96.5%,10 h的反应表现了良好的稳定性,产物选择性基本不变。  相似文献   

10.
以CuO为主活性组分,通过添加ZnO第二活性组分和掺入CeO_2电子助剂,研制出适用于二氧化碳固定床连续催化加氢制备甲醇反应的复合催化剂。结果表明:优化制备的CuO-ZnO-CeO_2/Al_2O_3-ZrO_2催化剂,在反应温度T=250℃,反应压力P=3.0 MPa,n(H_2)/n(CO_2)=3,空速GHSV=5000 h-1条件下用于二氧化碳催化加氢制备甲醇反应时CO_2转化率达到33.4%,甲醇选择性达到35.6%,催化剂在固定床装置上连续运行500h,CO_2转化率维持在33%左右,甲醇选择性维持在35%左右,催化剂具有较高的催化活性和稳定性。  相似文献   

11.
《化学工程》2016,(1):53-57
甲烷和二氧化碳重整制合成气是有效利用二氧化碳资源的重要途径,对于环境保护和综合利用资源具有重大意义。文章采用浸渍法制备一系列不同镍钼质量比的Ni-Cu-Mo/Al_2O_3催化剂,通过固定床反应器考察不同Ni/Mo质量比和反应温度对催化剂性能的影响,并采用XRD,BET,SEM,CO_2-TPD技术对催化剂进行了表征。结果表明:催化剂的最佳反应温度是800℃,Ni/Mo质量比为0.75的催化剂表现出最好的催化活性。在800℃,空速182 m L/(g·min)的反应条件下,CH_4、CO_2的转化率分别为97.7%,99.1%,CO,H2的选择性分别达到94.4%,92.1%。  相似文献   

12.
采用高温熔融法制备了一系列Fe_3O_4-FeO基Fe-M(M=V,Cr,Mn)熔铁催化剂,考察了其在n(H_2)/n(CO)=1.5、反应温度320℃、反应压力2.0 MPa和空速11400 h~(-1)条件下的费托合成反应(FTS)催化性能,研究了V、Cr、Mn助剂对Fe_3O_4-FeO基熔铁催化剂FTS催化性能的影响。并结合X射线衍射(XRD)、H_2程序升温还原(H_2-TPR)、H_2/CO/CO_2程序升温脱附(TPD)等手段对反应前后催化剂的物化性能进行表征。结果表明,Mn、V、Cr助剂的添加都增加了催化剂表面的碱性,提高了低碳烯烃选择性(C_2~=~C_4~=)。其中,添加V和Cr助剂后的催化剂,CO的转化率都有所降低,C_(5+)高碳烃选择性也大幅度降低。虽然V助剂的添加其产物中低碳烯烃选择性提高最多,但是其CO转化率大幅度下降。而Mn助剂添加后,其CO转化率最高,副产物CH_4选择性最低,且目标产物低碳烯烃选择性升高。因此,Mn是Fe_3O_4-FeO基熔铁催化剂费-托合成反应有利的助催化剂。  相似文献   

13.
对浸渍法制备的负载型Ni-Cu/γ-Al_2O_3催化荆,用Na和Cr进行酸碱性调节,并通过H_2,NH_3和CO_2程序升温脱附(TPD)技术表征了催化剂H_2吸附能力和酸碱性质.结果显示,Cr和Na改性后催化剂的酸碱性质得到了调节,H_2吸附能力显著增强,其中Cr与Na联合改性后的样品Ni-Cu-Cr-Na/γ-Al_2O_3具有最小的低强度酸量、最大的低强度碱量和最大的H_2吸附能力.催化剂月桂腈加氢性能表明,在氢分压2.0 MPa、反应温度70℃、反应时间30 min时,Ni-Cu-Cr-Na/γ-Al_2O_3催化剂具有最大活性,月桂腈的转化率为98%,月桂伯胺的选择性为99.2%.催化剂稳定性好,重复使用10次后,月桂腈的转化率由98%降为94.6%,月桂伯胺的选择性仍维持在98%以上.  相似文献   

14.
将Co、Mn、Co-Mn、Co-Mn-Ce分别负载于Al_2O_3上,得到Co/Al_2O_3、Mn/Al_2O_3、Co-Mn/Al_2O_3、Co-Mn-Ce/Al_2O_3等4种催化剂,在30~75℃的条件下对臭氧氧化甲苯反应进行催化,比较了4种催化剂对臭氧氧化甲苯的催化效果。结果表明,复合催化剂Co-Mn/Al_2O_3的催化效果优于单组分催化剂Co/Al_2O_3、Mn/Al_2O_3,75℃时,甲苯降解率达到69.02%;添加助剂Ce的复合催化剂Co-Mn-Ce/Al_2O_3(Co∶Mn∶Ce=1∶1∶0.1,物质的量比)的催化效果最好,75℃时,甲苯降解率达到82.95%。  相似文献   

15.
少量H_2可以增强丙烯在Ag/Al_2O_3催化剂上选择性还原NO的活性,降低NO的起燃温度(<100℃),在2个温度区间内NO转化率比较高:第1个是低温区间80180℃,第2个是250180℃,第2个是250500℃,在这两个温度区间内NO的转化率没有太大变化,在中间温度区间内比较低,低温区间NO转化率较高是由于H_2的还原作用,当温度高于180℃时C_3H_6起主要作用。N_2和NO_2是主要的竞争产物低温时有NO_2形成,当温度在140℃左右和高于380℃的时候对N_2的选择性非常高,在200℃和260℃时NO_2的浓度77×10500℃,在这两个温度区间内NO的转化率没有太大变化,在中间温度区间内比较低,低温区间NO转化率较高是由于H_2的还原作用,当温度高于180℃时C_3H_6起主要作用。N_2和NO_2是主要的竞争产物低温时有NO_2形成,当温度在140℃左右和高于380℃的时候对N_2的选择性非常高,在200℃和260℃时NO_2的浓度77×10(-6)(-6)83×1083×10(-6)占主要产物,165(-6)占主要产物,165500℃时仅仅检测到N_2O_2×10500℃时仅仅检测到N_2O_2×10(-6),对H_2-C_3H_6-SCR的反应体系,500℃时比较高的空速条件下会生成48×10(-6),对H_2-C_3H_6-SCR的反应体系,500℃时比较高的空速条件下会生成48×10(-6)NH_3并增加了CO/CO_2比值。氧气和催化剂表面NO_2等中间体与还原剂之间存在着竞争反应,但是仍能被还原成N_2,这些中间产物在低温时容易被H_2还原而在高于180℃时易被C_3H_6还原。通过XPS分析可以发现,部分活性组分Ag在载体Al_2O_3上即使在低温条件下也非常不稳定,由于不同价态银物种相互作用使催化剂在不同温度区间内活性不同选择性也有很大差别,在C_3H_6-SCR反应之后Ag(-6)NH_3并增加了CO/CO_2比值。氧气和催化剂表面NO_2等中间体与还原剂之间存在着竞争反应,但是仍能被还原成N_2,这些中间产物在低温时容易被H_2还原而在高于180℃时易被C_3H_6还原。通过XPS分析可以发现,部分活性组分Ag在载体Al_2O_3上即使在低温条件下也非常不稳定,由于不同价态银物种相互作用使催化剂在不同温度区间内活性不同选择性也有很大差别,在C_3H_6-SCR反应之后Ag+和Ag_n+和Ag_n(δ+)物种随之出现,当在反应气中通入H_2以后金属纳米Ag单质也会生成。XRD结果也同样表明,在H_2-C_3H_6-SCR反应后有大于5 nm的Ag纳米粒子形成。  相似文献   

16.
采用硼氢化钾还原方法制备了Ni-B/Al_2O_3催化剂,并与传统高温加氢还原法制备的Ni/Al_2O_3催化剂进行对比。通过X射线衍射(XRD)、透射电子显微镜(TEM)、氢气程序升温还原(H2-TPR)、紫外-可见漫反射光谱(UV-vis DRS)及X射线光电子能谱(XPS)等方法对催化剂结构和性质进行表征,并对催化剂进行1-辛炔加氢性能考评。结果表明,由于硼氢化钾还原能力较弱,Ni-B/Al_2O_3催化剂表面Ni0含量小于氢气还原的催化剂,但是其活性金属粒径更小,因而加氢反应活性仍与Ni/Al_2O_3相近。此外,Ni-B/Al_2O_3催化剂中Ni处于富电子状态,减弱了1-辛烯的吸附,显著提高了1-辛烯选择性。在1-辛炔转化率为99%时,1-辛烯选择性仍高达91%。  相似文献   

17.
Fe修饰Mn-Ce/Al2O3-TiO2催化剂对NO氧化性能的实验研究   总被引:1,自引:0,他引:1  
采用溶胶凝胶法制备了TiO_2与Al_2O_3摩尔比为1∶4的Al_2O_3-TiO_2复合氧化物载体,使用共浸渍法制备了Mn,Ce质量分数分别为10%和2%的Mn-Ce/Al_2O_3-TiO_2催化剂,并通过添加不同质量分数的Fe对催化剂进行修饰。在固定床反应装置上进行了催化剂氧化性能的实验。结果表明:在空速为15 000 h~(-1),氧气体积分数为8%时,Fe的添加能够显著提升Mn-Ce/Al_2O_3-TiO_2催化剂的NO催化氧化性能,并在Fe质量分数为4%时,Mn-Ce-Fe(4)/Al_2O_3-TiO_2催化剂的NO催化氧化活性最优,280℃时NO的转化率达到86%。H_2-TPR实验结果显示,Fe的修饰使Mn-Ce/Al_2O_3-TiO_2催化剂的还原峰大幅向低温方向移动,改善了催化剂的氧化还原活性。  相似文献   

18.
针对CO_2-O_2联合重整CH_4反应制备合成气的催化剂进行了研究。首先以Zr、Ce无机盐为前体,采用溶胶-凝胶法和分步浸渍法制备ZrO_2-CeO_2载体,然后运用浸渍法制备负载型Ni催化剂,对载体的制备方法、焙烧温度、Ce/Zr比例及不同的活性组分对催化剂性能的影响进行了研究,再用BET和XRD等技术对催化剂进行表征。结果表明:在550℃下焙烧载体,以浸渍法制备的Ce/Zr=1/2,Ni负载量为9%的催化剂Ni/ZrO_2-CeO_2用于CH_4重整反应,可获得较高的转化率和稳定性。  相似文献   

19.
结合Mn的低温脱硝活性与Ce的储氧能力,将Mn-Ce作为整体改性剂,添加到传统钒钨钛催化剂中,用浸渍法制备了8份样品,以NH_3为还原剂,于管式固定反应器内进行脱硝及抗水抗硫实验,通过NH_3-TPD、H_2-TPR、N_2物理吸附测试、XRD手段对样品进行表征。综合脱硝活性及240℃抗水抗硫测试结果,选出较优的改性催化剂为3V-10W-7.7Mn-4.3Ce/75Ti,其在180~330℃保持脱硝活性95%以上,240℃抗水抗硫活性稳定在80%左右。该样品的比表面积虽然不到67m~2/g,但是Mn O_2与Ce O_2高度分散在Ti O_2表面;7.7%含量的Mn O_2也使催化剂具有大量的强酸位点,能够增强对NH_3的吸附;适当含量的Ce也增强了催化剂的低温氧化还原能力。  相似文献   

20.
文中开展了对CO_2-CH_4催化重整制备合成气的工艺过程研究,以使用最广泛的负载型Ni/γ-Al_2O_3为催化剂,以CO_2的转化率和H_2/CO比为评价指标,利用单因素实验对CO_2与CH_4的转化率及产物H_2/CO的比例进行分析,得到适合F-T合成的低H_2/CO比的合成气。利用Box-Behnken响应面法对CO_2的转化率及H_2/CO比进行优化,得到双响应值下的最佳工艺条件为:CO_2/CH_4摩尔比为1.70,进料空速为8 227.78 h~(-1),反应温度为728.77℃。在双目标下,CO_2最大转化率与最小H_2/CO比分别为87.83%和0.949。在此条件下进行5次平行实验,得到CO_2转化率与H_2/CO比分别为87.89%和0.949。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号