首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究以聚乙烯醇(PVA)与纤维素纳米晶(CNCs)共混形成网络结构,并引入了氧化石墨烯(GO)和聚吡咯(PPy),通过原位聚合法将PPy均匀沉积在复合材料表面,并以冻融循环法和冷冻干燥法制备复合气凝胶,最终用还原剂将复合材料中的GO还原为还原氧化石墨烯(RGO),制备了导电性良好的CNCs/PVA/RGO/PPy复合气凝胶。通过结构及电化学性能表征分析,表明该复合气凝胶有着良好的多孔网状结构以及优异的电化学性能(在电流密度为0.25 mA/cm2时,比电容量约为352 F/g),该复合气凝胶在超级电容器电极材料领域具有很好的应用前景。  相似文献   

2.
为促进纳米纤维素材料在储能领域的应用,综述了以其为原料,采用静电纺丝和炭化技术以及2种方法结合制备用于电池和超级电容器等电极材料和隔膜材料的工艺。通过分析发现:静电纺纳米纤维素材料具有电化学性能优异、柔性较好等优点,可用作增强材料与导电材料复合使用;炭化处理纳米纤维素材料具有独特微孔结构,比表面积大等特点,其存在的形态主要有气凝胶、纳米纤维膜及薄膜等;重点分析了2种方法叠加制备纳米纤维素材料在储能领域应用中存在的问题;提出构建环保、形态结构多样的天然基材储能器件是未来的发展方向,指出静电纺丝和炭化制备纳米纤维素材料在柔性储能器件和小巧型移动端储能设备中具有较好应用前景。  相似文献   

3.
以生物质纤维素气凝胶为新型模板合成了具有多级孔隙结构的三维(3D) TiO_2。研究发现,通过改变制备条件可有效调控纤维素气凝胶的多级结构,进而调控TiO_2的孔隙结构。以具有壁腔结构的纤维素气凝胶为模板制得的TiO_2保留了原来模板的结构,而以相互连接的纳米纤维气凝胶为模板制得的TiO_2则形成与原模板明显不同的孔隙结构。TiO_2晶粒大小受TiO_2前驱体浓度的影响,但不受模板孔隙结构的影响。制备的3D TiO_2具有高孔隙率与比表面积分别高达0. 690 cm3/g、102 m2/g;同时,制得的TiO_2具有高的光催化活性,可在55 min内使甲基橙的降解率超过95%,高于商业化的TiO_2纳米颗粒。  相似文献   

4.
摘要:通过硫酸水解法由棉纤维制备纤维素纳米晶,再采用原位化学氧化法,在纤维素纳米晶表面进行吡咯的原位聚合,成功制得包裹聚吡咯的纤维素纳米晶复合导电材料。产物的相貌、结构和性能的研究表明:聚吡咯-纤维素纳米晶复合导电材料表现出核壳结构,纤维素纳米晶与聚吡咯间存在着较强的相互作用有利于聚吡咯均匀地包覆纤维素纳米晶;有机掺杂剂DBSNa由于分子体积大,降低了分子间作用力,其电导率不如无机掺杂剂NaCl,但是热稳定性和比电容好于NaCl,并且显著提高了复合体系的电化学容量,做为超级电容器具有良好的应用前景。  相似文献   

5.
纤维素纤维的可及度及多孔性能表征研究   总被引:3,自引:0,他引:3  
纤维素是具有多孔性结构及一定孔径分布的天然高分子材料,其中大部分微孔孔径在纳米数量级.这种特殊的结构使其在原位复合法制备磁性纳米复合材料研究中有无比的优越性和可操作性.本文采用N2吸附法、染料吸附法、保水值测定等手段表征不同原料来源的纤维素纤维的多孔性,并对丝光化和超声波预处理后纤维素纤维的比表面积、孔隙率、孔径和对液体的吸附性能的变化进行了研究.研究表明不同原料的比表面积、孔径尺寸和羧基含量均不相同,云杉纤维羧基含量较高,孔径较小,表面积较大,可作为制备磁性纳米复合纤维素纤维及磁性纸的原料.丝光化和超声波处理能进一步提高纤维素纤维的保水值和可及表面积.  相似文献   

6.
张琳  李群  刘蓉蓉  潘丽 《中国造纸》2019,38(7):36-41
使用漂白硫酸盐针叶木浆为原料,以经高碘酸钠氧化后制备出的二醛纤维素为基材负载纳米银颗粒,后经高压均质法得到载银量为24.78%的纳米银/纳米二醛纤维素气凝胶。探讨高碘酸钠氧化反应时间对构成漂白硫酸盐针叶木浆的纤维素大分子以及针叶木纤维的影响。通过傅里叶变换红外光谱仪、X射线衍射仪、紫外可见分光光度计、扫描电子显微镜、透射电子显微镜和比表面积和孔径分析仪对样品进行表征。结果表明,随着氧化时间的增加,纤维素的醛基含量持续上升,当反应4 h时增至330 μmol/g,纤维的聚合度由1447大幅下降至525,同时零距抗张强度和长度也呈现下降趋势。制备出的载银气凝胶上负载的纳米银颗粒为球形,气凝胶的比表面积为35.40 m~2/g,平均孔径为19.62 nm。  相似文献   

7.
本研究以纳米微纤化纤维素(NFC)和石墨烯(GR)为原料,通过湿法造纸技术,制备超薄高导热复合膜(GR/NFC膜),并探讨了GR含量和膜定量对GR/NFC膜性能的影响.结果表明,GR含量和GR/NFC膜的定量均会影响GR/NFC膜的整体性能.TG-DSC分析显示,随GR含量增加,GR/NFC膜的热稳定性增加,膜内部孔隙...  相似文献   

8.
以乙酸木质素、聚氧化乙烯、乙酰丙酮铁和聚乙烯吡咯烷酮为原料,通过静电纺丝以及随后的碳化过程制备得到木质素基多孔纳米碳纤维,将其用作超级电容器电极材料。多孔碳电极在0.5A/g的电流密度下的比电容值为67.05F/g,比未添加开孔剂的木质素基碳纤维电极提高了88%。多孔碳电极还具有良好的循环性能,在0.5A/g的电流密度下循环1000次后的保留电容为初始的92%。此外,木质素基多孔纳米碳纤维由于开孔效果比表面积增加,微孔和介孔的增加促进了电解液离子的转移和吸附,增强了材料的电化学性能。制备的木质素基多孔纳米碳纤维表现出来的性能使它们具有作为能源存储的可能性。  相似文献   

9.
利用溶胶凝胶法制备了活性碳纤维/NiO/MnO2新型复合电极材料。用扫描电镜、X-衍射和等温吸附方法测定了复合电极的相态结构和比表面积,用循环伏安和恒流充放电实验测定了其电化学性能。结果表明:金属氧化物是无定形非晶态结构,以微小颗粒分布在活性碳纤维表面;当Ni/Mn配比为3:1(摩尔比)、热处理温度为400℃、NiO/MnO2负载量为3.9%时,复合电极的比电容达到290.2F/g,比活性碳纤维高1.3倍。  相似文献   

10.
为制备具有高比表面积和分级多孔结构的碳材料来提高其用于电极的电荷存储能力,采用静电纺丝技术将钴金属有机骨架材料(ZIF-67)与聚丙烯腈(PAN)/聚甲基丙烯酸甲酯(PMMA)混合制备复合纳米纤维膜,然后对其进行高温炭化处理得到钴基分级多孔复合碳材料,表征了其结构和电化学性能,探究了ZIF-67负载量对复合碳材料结构和性能的影响。结果表明:负载ZIF-67的复合碳材料相对于单一碳材料具有较高的比表面积和丰富的中孔结构,当ZIF-67相对于PMMA的负载量为10%时,复合碳材料比表面积为259.814 m2/g,中孔占比为68.8%,在1 A/g电流密度下的比电容可达151 F/g,是未负载ZIF-67的PAN/PMMA碳材料的3倍,且在2 000次循环后,比电容保持率仍为84.8%。  相似文献   

11.
本文以纳米结晶纤维素(NCC)和含硫改性壳聚糖为原料,合成含硫改性壳聚糖气凝胶和含硫改性壳聚糖/NCC复合气凝胶。通过扫描电镜(SEM)和比表面积(BET)对两种气凝胶的形貌和结构进行了分析;并通过改变溶液的pH值、初始浓度、吸附时间和吸附剂用量等吸附条件,探究了气凝胶对Hg~(2+)的吸附情况。实验结果表明,与含硫改性壳聚糖气凝胶相比,复合气凝胶的比表面积增大了10.37%;在pH为5、吸附剂用量30.0 mg和Hg~(2+)溶液初始浓度为100mg/L时,复合气凝胶的最大吸附容量达到最大为242.3 mg/g,比含硫改性壳聚糖气凝胶增加了2.02%;并且复合气凝胶对Hg~(2+)的吸附过程符合准二级动力学模型,同时复合气凝胶能用脱附剂EDTA脱附再生。  相似文献   

12.
本试验以杨絮为原料,经化学预处理,得到纯化纤维素,再经机械处理制备纳米纤维素溶胶,通过液氮对杨絮纳米纤维素溶胶进行冷冻处理,制备得到杨絮纳米纤维素气凝胶。为探究不同超声处理时间对杨絮纤维微纤化的影响,笔者从气凝胶的密度、孔隙率、微观形貌等方面进行分析,进而探究了超声处理时间对所得气凝胶性能的影响。  相似文献   

13.
纳米纤维素/MXene复合材料兼顾MXene优异的导电性能、丰富的表面官能团和超高比表面积,以及纳米纤维素基材料优良的力学性能和机械稳定性,成为应用于柔性传感、电磁屏蔽、能源储存等领域的热门材料。本文对纳米纤维素/MXene复合材料的制备方法进行论述,重点阐述其作为柔性电子器件在压力传感器、电磁屏蔽材料、超级电容器中的性能及最新研究进展,归纳总结纳米纤维素/MXene复合材料所面临的挑战,并对其未来发展趋势进行展望。  相似文献   

14.
纤维素基功能材料的产业化是传统造纸行业转型升级的重要发展方向。纳米纤维素基气凝胶是一种基于纳米纤维素制备而成的轻质固体材料,具有孔隙率高、比表面积大、低密度和可生物降解等优点,在吸附分离领域有广泛的应用。本文对纳米纤维素基气凝胶的制备方法进行了总结,探讨了制备过程对纳米纤维素基气凝胶结构的影响,综述了纳米纤维素基气凝胶在吸附分离领域中的应用进展,并展望了其应用前景。  相似文献   

15.
炭材料作为研究最早、使用最广泛的超级电容器电极材料,具有良好的热稳定性和化学稳定性,但传统炭材料的制备往往受成本、资源和环境等问题的限制,而生物质炭材料不仅具备孔隙率高、导电性能好等优异性能,且原料来源丰富、成本低廉。本实验采用废弃生物质——植鞣革屑为原材料制备多孔炭,相比于纯的胶原前驱体,植鞣剂单宁有助于碳元素含量提高。而后用化学氧化聚合法在多孔炭材料基底上原位生长聚吡咯进一步提高碳元素含量,再次炭化后制备得到高碳元素含量的革屑基复合炭材料。电化学测试表明,在三电极体系中,当电流密度为1 A/g时,电极比电容值可达330.5 F/g,并具有良好的倍率性能。由该材料组装而成的固态超级电容器,具有高的比电容值,在500 mV/s下进行5000次充放电循环后电容保持率接近100%。  相似文献   

16.
超级电容器中纳米纤维素基电极的研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
纳米纤维素机械强度高、密度低且表面含有可化学改性的羟基官能团,可作为组装高性能超级电容器电极的优选材料。本文综述了纳米纤维素与导电聚合物、过渡金属氧化物等活性材料制备超级电容器软材料和碳基复合电极的机理,对冷冻干燥、碳化、原位聚合、过滤、涂覆等组装方法进行了详细讨论,并对纳米纤维素基电极的机械性能和电化学性能进行了对比和分析。最后,对纳米纤维素基电极在超级电容器中的应用前景进行了展望。  相似文献   

17.
以木质素为硫源和碳源,聚丙烯腈为氮源和助纺剂,经静电纺丝、碳化和活化等步骤成功制备出了N、S共掺杂的碳纳米纤维。同时在纺丝液中掺杂石墨烯(GNs),利用GNs对N、S的吸附固定作用,提高碳纤维中杂原子含量,以该碳纳米纤维材料为活性物质,制备得到超级电容器。结果表明,制备的超级电容器在以6 mol/L KOH为电解液的双电极系统中具有良好的电化学性能,GNs掺杂前后超级电容器比电容从114.6 F/g增大到253.4 F/g,等效串联电阻从24.1Ω减少到6.8Ω,能量密度从3.96 Wh/kg提高到8.99 Wh/kg。  相似文献   

18.
针对纤维素纳米纤维(CNF)气凝胶易燃、强力低等问题,利用纳米蒙脱土(MMT)共混改性纤维素纳米纤维,基于冷冻干燥的方法制备阻燃隔热的CNF/MMT复合气凝胶。研究了MMT质量分数对CNF/MMT复合气凝胶形貌结构、压缩性能、热稳定性、热导率和阻燃性能的影响。结果表明:MMT的引入使气凝胶具有更加紧密的片层结构,气凝胶力学性能、热稳定性和阻燃性能得到改善;在MMT质量分数为50%时,CNF/MMT复合气凝胶的表观密度最大且仅为0.016 8 g/cm3,应变为10%的应力最大为12.45 kPa,应变为70%的应力最大为77.93 kPa,导热系数最大为 0.04 W/(m·K); 气凝胶中MMT质量分数不低于42.9%时,复合基气凝胶的极限氧指数得到明显提升。  相似文献   

19.
为开发设计具有高电化学性能的碳纳米纤维电极,采用静电纺丝技术、戊二醛交联和高温炭化制备聚丙烯腈/高直链淀粉(PAN/HAS)基碳纳米纤维,并对其形貌、元素组成、石墨化晶体结构和比表面积进行了研究。结果表明:经过戊二醛交联后的碳纳米纤维呈现连通结构,并具有优异的石墨晶体和多级孔结构、较大的比表面积(647 m2/g)和较高的总孔体积(0.60 cm3/g);将其制备成电极,在三电极体系下,当电流密度为1 A/g时比电容为255 F/g,当电流密度为20 A/g时比电容保持率高达71%;经过10 000次充放电循环后,电极比电容的保持率高达99.8%,显示出优异的循环耐久性。  相似文献   

20.
纳米纤维素表面含有大量羟基且长径比高,具有较好的润湿性和分散电活性材料的能力,是一种较好的电极材料基底,可作为超级电容器电极材料的优先选择。但是其缺点在于导电性不高,需要加入导电材料进行提升。本文归纳了纳米纤维素基水凝胶电极的分类,探讨了纳米纤维素基水凝胶电极的合成方法,对比分析了不同导电材料的纳米纤维素基水凝胶电极的电化学性能,并对其在未来应用领域的发展前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号