首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
皖南某铁铜硫多金属矿中铁矿物以磁性铁为主,伴生有少量黄铜矿和黄铁矿,矿物嵌布关系复杂、粒度粗细不均。根据矿石性质,试验采用优先浮铜—铜尾浮硫—硫尾弱磁选铁的工艺流程,针对含Fe44.55%、Cu 0.26%、S 2.73%的原矿,获得了Fe品位67.56%、回收率86.94%的铁精矿,Cu品位19.44%、回收率84.69%的铜精矿以及S品位37.85%、回收率62.12%的硫精矿,该流程较好地回收了铁、铜、硫矿物,为同类矿石的选矿提供了借鉴。  相似文献   

2.
对某复杂含银硫化铜矿进行工艺矿物学分析,研究发现矿石中的有价元素主要有Cu、Ag、S,含量分别为0.81%、7.03g/t、4.28%,主要的金属矿物有磁黄铁矿、黄铜矿、方铅矿和黄铁矿,黄铜矿大部分与磁黄铁矿共伴生,方铅矿主要与黄铜矿共伴生,且部分被黄铜矿包裹,银矿物则共伴生于这些金属矿物之间。粒度大于0.075mm的含铜矿物超过88%,其中96.83%的铜以硫化矿形式存在。在此基础上,采用优先选铜—抑铅浮铜—尾矿选硫的工艺,最终获得两种精矿,铜精矿中Cu、Ag、S的品位分别为25.24%、140.06g/t、34.69%,回收率分别为92.95%、60.39%、24.48%,硫精矿中S的品位为45.18%、回收率为55.53%,实现了矿石中有价元素的综合回收。  相似文献   

3.
云南河口铜矿石含Cu 0.59%、S 4.57%、Fe 26.98%,属伴生硫铁的低品位硫化铜矿石,铜、硫、铁在矿石中分别主要以黄铜矿、黄铁矿、磁铁矿形式存在,但有少部分黄铜矿与黄铁矿形成固熔体。采用铜硫混合浮选-铜硫分离浮选-浮选尾矿弱磁选工艺对该矿石进行综合回收铜、硫、铁的选矿试验,得到了铜品位为18.03%、铜回收率为93.07%的铜精矿,硫品位为52.02%、硫回收率为56.34%的硫精矿和铁品位为61.90%、铁回收率为27.38%的铁精矿,从而为该矿石的合理开发利用提供了技术依据。  相似文献   

4.
为了合理开发利用某含金硫化铜矿资源,开展了工艺矿物学和选矿综合利用试验研究。研究显示,矿石中主要有价元素铜品位为0.57%,伴生元素金品位为1.56 g/t;铜主要以黄铜矿的形式存在,金主要以自然金和银金矿的形式赋存,其载体矿物多为黄铁矿和黄铜矿。以YZ-05为捕收剂,采用“铜金硫混合浮选—铜硫分离—硫精矿再磨—金硫分离”的分选试验流程,闭路试验得到了铜精矿、金精矿和硫精矿,其中铜精矿Cu品位为19.57%、回收率88.7%,Au品位为36.93 g/t、回收率65.5%,Ag品位为61.00 g/t,回收率46.70%;金精矿Au品位42.27 g/t、回收率21.1%金综合回收率为86.6%;硫精矿中S品位为48.24%,回收率为69.70%。该研究为此矿石的综合回收利用提供了技术依据。  相似文献   

5.
河南某钼矿石属于浸染状细晶型钼矿,矿石中Mo品位为0.12%、含Cu 0.04%、含S 2.32%,含量均较低,综合回收难度较大。为有效回收利用矿石中的有价金属,进行了选矿试验研究。工艺矿物学研究表明,矿石中的主要可回收的金属矿物为辉钼矿、黄铁矿和黄铜矿;矿石中的辉钼矿以细板片状、针柱状被石英包裹,粒度细小;黄铜矿与脉石矿物嵌布关系密切,粒径为0.02~0.05 mm;黄铁矿中常包含乳滴状黄铜矿或细粒磁黄铁矿,粒径为0.10~0.70 mm。基于矿石特性,选取实验室研制的辉钼矿捕收剂团聚油、铜抑制剂TY以及非硫化矿抑制剂EMY-01,采用"阶段磨矿浮选分离铜钼—铜钼分离尾矿浮选富集铜—选钼尾矿浮选硫"闭路试验流程,最终获得了Mo品位49.73%、Mo回收率91.17%的钼精矿,S品位50.75%、S回收率90.78%的优质硫精矿,以及Cu品位16.20%、Cu回收率36.45%的铜精矿,指标优异,实现了该细晶型钼矿中有用矿物的分离回收。  相似文献   

6.
某复杂铜硫铁矿石的选矿工艺研究   总被引:4,自引:0,他引:4  
针对某复杂铜硫铁矿石进行了选矿工艺研究。依据矿石性质,用石灰和CTP作铜硫分离中黄铁矿的抑制剂、Z-200作黄铜矿的捕收剂、111#作起泡剂,采用"铜硫混浮—铜硫分离—磁选"流程,在原矿Cu品位0.59%、S品位7.08%、Fe品位40.31%的条件下,得到了Cu品位19.46%、回收率88.02%的铜精矿,S品位50.71%、回收率81.89%的硫精矿以及Fe品位65.35%、回收率83.69%的铁精矿。所推荐的工艺流程简单,达到了综合回收铜、硫、铁矿物的目的,易于产业化。  相似文献   

7.
该矿锡多金属矿含有锡、铜、铅、锌等多种有价金属矿物,综合利用价值高。试验主要在选锡前回收铜、铅、锌等伴生矿物,采用先铜铅部分混合浮选后锌浮选的工艺流程,闭路试验获得Cu品位23.49%,回收率85.98%的铜精矿;Pb品位56.22%,回收率80.77%的铅精矿;Zn品位47.09%,回收率87.21%的锌精矿。试验还获得了含S品位37.75%,回收率74.20%的硫精矿,同时尾矿中Sn的回收率为89.33%。达到了选锡前对铜、铅、锌等伴生矿物综合回收的目的。  相似文献   

8.
以四川某地铜矿为研究对象,依据其矿石性质,采用优先浮选工艺流程回收铜、伴生硫钴矿物,闭路试验可获得Cu品位24.57%、回收率97.06%的铜精矿,Co品位0.31%、回收率33.30%的硫钴精矿。达到了对铜、钴等矿物综合回收的目的。  相似文献   

9.
对秘鲁某金铜铁多金属矿含Cu 0.080%、Au 0.04 g/t、S 1.28%、Fe 19.83%的浅部低品位矿石进行了选矿预选富集试验研究。由于该矿前期开采处理的浅部矿主金属铁及铜、金等伴生有价金属品位较低,采用原设计的浮选—磁选工艺处理,存在原矿入磨量大、磨选成本高、分选难度大等问题。根据矿石的工艺矿物学研究特性,提出采用-25 mm原矿干抛—干抛精矿高压辊磨细碎—高压辊磨细碎产品湿抛—预抛尾矿分级回收铜铁的工艺进行选矿预选富集。选矿预选富集全流程试验最终获得铜品位0.10%、铁品位30.13%、铜回收率73.13%、铁回收率89.83%的总预选精矿,总预选抛尾率为40.19%。项目成果为提高选厂后续磨浮作业的入选品位,降低入磨矿量和磨选成本,综合回收矿石中铁铜等伴生有价金属创造了良好的前提条件。  相似文献   

10.
内蒙古某矽卡岩型高硫含铜矿石Cu品位为0.22%、S品位为9.32%,主要铜矿物为黄铜矿,主要硫矿物为黄铁矿;硫化铜分布率74.63%,氧化铜分布率24.39%;非金属矿物主要有石榴石、透辉石。为了确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,在磨矿细度为-0.074mm70%的情况下,采用1粗2精2扫浮铜、1粗1精1扫浮硫,铜硫优先浮选流程处理矿石,最终获得Cu品位18.55%、Cu回收率80.34%的铜精矿,S品位52.51%、S回收率56.68%的硫精矿。试验确定的铜硫优先浮选流程结构简单、合理,易于操作,选矿技术经济指标良好,可作为矿石开发利用的依据。  相似文献   

11.
对秘鲁某含Cu 0.12%、Au 0.12 g/t、S 2.60%、Fe 45.52%的金铜铁多金属矿石进行了选矿工艺优化试验研究。该矿石原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,提出采用铜硫等可浮—铜硫分离—难选硫强化浮选—浮选尾矿磁选回收铁的优化工艺流程。铜硫等可浮分选时,在无碱条件下采用选择性的铜捕收剂BK306将铜和部分易浮黄铁矿等硫化矿物浮出,并进行铜硫分离回收铜、金;然后采用活化剂和强力捕收剂强化浮选脱除矿石中的难浮硫化物;最后通过磁选从浮选尾矿中回收铁。该优化工艺既可实现矿石中铜、金等有价金属的高效回收和硫的脱除,又能显著降低铜硫分离所需的石灰用量,并保证后续磁选作业直接获得含硫低、铁品质较好的铁精矿。闭路试验获得铜品位20.10%、金品位15.29 g/t、铜回收率68.42%、金回收率49.07%的铜精矿,硫品位30.78%、总硫回收率84.05%的硫精矿以及铁品位68.88%、含硫0.18%、铁回收率90.57%的铁精矿。与原工艺相比,优化工艺的铜精矿铜品位和铜回收率分别提高2.49和10.25个百分点,铜精矿中金品位和金回收率分别提高5.27 g/t和17.05个百分点,硫回收率提高1.78个百分点。实现了矿石中铜、金、硫、铁的高效综合回收。   相似文献   

12.
四川某铜多金属矿石中除铜外,还伴生有钼、硫钴和铁。为了合理有效地利用该矿石,对其进行了选矿工艺研究。结果表明,采用铜钼混合浮选-铜钼分离浮选-混浮尾矿浮硫钴-浮选尾矿弱磁选回收铁的工艺流程,可在高效回收铜的同时较好地实现钼、硫钴和铁的综合回收,所获铜精矿铜品位为21.25%、铜回收率为93.38%,钼精矿钼品位为45.78%、钼回收率为45.72%,硫钴精矿硫品位为44.69%、钴品位为0.46%、硫回收率为41.53%、钴回收率为46.42%,铁精矿铁品位为63.73%、铁回收率38.29%。  相似文献   

13.
某硫化铜矿含铜1.03%,含硫8.12%,铜矿物嵌布粒度较细,且存在大量易泥化脉石矿物,难以获得理想的选矿指标。以Z-200为捕收剂,BK204为起泡剂,采用“铜硫混选—铜硫分离”工艺流程,闭路试验可获得铜精矿含铜23.70%,铜回收率87.17%,硫精矿含硫41.34%,硫回收率60.88%,取得了较好的浮选指标,实现了资源的有效利用。  相似文献   

14.
澳大利亚某含硫铁铜矿的选矿工艺研究   总被引:2,自引:0,他引:2  
针对澳大利亚某含硫铁铜矿样, 采用先浮选硫化矿物、后磁选铁矿物的原则工艺, 可在有效降低铁精矿中硫含量的同时综合回收矿石中的铜、硫。在原矿磨至-0.074 mm粒级占70%后铜硫混选, 粗精矿再磨至-0.074 mm粒级占95%后铜硫分离, 铜硫混选尾矿再弱磁选的闭路试验中, 可以获得铜精矿品位19.93%、铜回收率80.35%, 硫精矿品位32.75%、硫回收率41.13%, 铁精矿铁品位71.45%、铁回收率89.44%(铁精矿含硫0.34%)。  相似文献   

15.
以自行研制的LC1作捕收剂, 水玻璃作脉石矿物抑制剂, 采用铜硫混浮-铜硫混合精矿再磨-铜硫分离原则流程对某铁矿磁选尾矿进行了实验室研究,获得了铜精矿品位22.13%, 铜回收率81.88%, 硫精矿品位31.69%, 硫回收率76.34%的指标。  相似文献   

16.
国外某低品位含铁氧化铜矿氧化率高,绿泥石含量大、易泥化,铁含量较高。根据以上矿石性质,采用一次粗选、一次扫选、二次精选的硫氧混合浮选流程回收铜,浮选尾矿再经两段磁选回收铁,最终获得铜精矿铜品位17.04%、铜回收率52.65%,铁精矿铁品位62.62%、全铁回收率64.18%、磁性铁回收率92.96%的指标。  相似文献   

17.
对河南某铁、硫、铜多金属矿进行了选矿试验研究。根据该矿石的工艺矿物学特性,采用铜、硫优先浮选—浮选尾矿弱磁选的联合工艺,综合回收矿石中的铁、硫、铜。获得的铁精矿品位65.50%、回收率43.04%,硫精矿品位42.50%、回收率90.63%,铜精矿品位17.50%、回收率54.80%,并且铁精矿含铜和含硫分别为0.15%和0.25%,达到国家铁精矿粉矿二级品的质量标准。  相似文献   

18.
为查明矿石性质对选矿指标的影响,对国外某高铁型铜硫矿采用光学显微镜、物相分析和化学多元素分析等分析测试手段,研究了矿石的矿物组成、主要矿物嵌布特征和主要元素赋存状态等工艺矿物学特征.工艺矿物学研究结果表明,Cu和S为矿石中主要目的元素,品位分别为0.78%和11.12%,伴生元素银品位为7.5 g/t,铜主要赋存于黄铜...  相似文献   

19.
铁多金属矿综合回收铁铜硫选矿工艺研究   总被引:2,自引:0,他引:2  
铁多金属矿含铁47.79%、含铜0.066%、含硫2.05%, 通过“弱磁粗选-再磨-浮选脱硫-弱磁精选”流程选铁、“铜硫混浮-脱泥脱药-再磨-铜硫分离”流程回收铜和硫, 在一段磨矿-0.075 mm粒级占50%, 铁粗精矿、铜硫粗精矿再磨-0.075 mm粒级含量均为80%条件下, 可获得铁精矿铁品位66.63%、含硫0.069%、含铜0.0072%、铁回收率为92.41%, 铜精矿铜品位20.25%、含铁26.84%、含硫27.80%、铜回收率为52.16%, 硫精矿含硫44.00%、含铁43.04%、含铜0.15%、硫回收率为78.72%, 实现了铁、铜和硫的综合回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号