首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
刘发友  徐志刚  尚明 《特殊钢》2013,34(1):25-27
GCr15轴承钢的冶炼流程为80 t顶底复吹转炉-LF精炼-VD-180 mm×220 mm连铸工艺。研究了碱度3~8的CaO-SiO2-Al2O3-CaF2-MgO精炼渣系对高品质GCr15轴承钢(/%:0.95~1.05C、0.15~0.35Si、0.25~0.45Mn、1.40~1.65Cr、≤0.025P、≤0.025S、≤0.001 2[O])冶金质量的影响。生产结果表明,采用碱度5.8的精炼渣(/%:50~55CaO、6~12SiO2、15Al2O3、10CaF2、≤0.5FeO、≤8MgO)可有效地降低钢中氧含量和夹杂物,GCr15轴承钢的氧含量为(5~9)×10-6,平均氧含量为5.6×10-6,硫含量达0.005%~0.009%,夹杂物0~0.5级。  相似文献   

2.
精炼渣组成对钢渣硫分配比的影响   总被引:1,自引:0,他引:1  
陈跃峰  王雨 《特殊钢》2007,28(4):36-38
采用二次正交回归实验设计方法在中频感应炉内进行碱度R(CaO/SiO2)2~7的CaO-SiO2-MgO- Al2O3精炼渣系的脱硫实验,建立渣系组分与钢-渣硫分配比Ls关系的数学模型,实验渣碱度、渣指数MI (R:Al2O3)、CaF2、MgO和FeO含量对硫分配比Ls的影响。结果表明,渣碱度R 3.5~5.0、渣指数MI 0.25~0.40时脱硫效果较好;精炼渣最佳组分为(%):9CaF2、8MgO、13Al2O3、<0.5FeO,R值=4。  相似文献   

3.
分析了齿轮钢中氧含量控制的关键技术:精炼渣SiO2含量,(CaO)/(Al2O3),(FeO+MnO),RH,氩气搅拌,连铸工艺。结合攀枝花新钢钒股份有限公司炼钢厂的工艺条件,通过控制转炉终点[C]≥0.10%,钢包渣厚50~80 mm,出钢过程加高碱度精炼渣,LF白渣精炼[渣中T.Fe-0.43%,(MnO+FeO)-0.93%,SiO2-5%,平均(CaO)/(Al2O3)-1.9],20 min RH处理,连铸保护浇铸等工艺措施,并在炉后平台,LF精炼和钙处理过程采用合适的吹氩模式,使20CrMoH齿轮钢铸坯总氧含量≤15×10-6,平均总氧含量为11.8×10-6。  相似文献   

4.
莱钢50t EBT EAF-LF(VD)-CC生产GCr15轴承钢的工艺实践   总被引:1,自引:1,他引:0  
莱钢采用EAF全程泡沫渣埋弧操作,EBT出钢合金化,LF 2次精炼渣碱度4.0~5.0,精炼渣的主要成分(%)为:45~50CaO,9~13SiO2,9~13Al2O3,7~8MgO,SiC扩散脱氧和40~60 L/min流量氩气搅拌,VD处理时间≥15 min,连铸全程保护浇铸生产GCr15轴承钢。GCr15轴承钢中的平均氧含量为7.9×10-6,最高氧含量为10×10-6。  相似文献   

5.
针对某石油套管钢管壁内缺陷,采用扫描电镜?能谱仪(SEM-EDS)分析,并结合FactSage8.0软件计算进行研究,结果表明缺陷纵向面主要由浅条纹及深条纹组成,浅条纹处存在大量MgO·Al2O3夹杂物,深条纹处有大量的Al2O3、MgO·Al2O3、CaO·Al2O3·SiO2等夹杂物聚集在一起。缺陷横截面上的夹杂物主要为CaO·Al2O3·SiO2、CaO·Al2O3·MgO和CaO·Al2O3·MgO·SiO2 3类。推测钢管壁内缺陷形成机理主要为:①大包钢水在浇注末期钢水卷带钢包渣进入中间包钢水中,该渣滴随后吸附钢中高Al2O3含量的微细xAl2O3·yCaO或Al2O3夹杂物,导致渣滴中的Al2O3含量升高;②大包钢水在真空脱气(VD)精炼过程大Ar气搅拌下卷入了钢包渣,该渣滴随后吸附钢中的微细Al2O3夹杂物,导致渣滴中的Al2O3含量升高;以上两种形式形成的渣滴在凝固冷却过程中,转变为CaO·Al2O3·SiO2, CaO·Al2O3·MgO,CaO·Al2O3·SiO2·MgO 3种类型的夹杂物。圆管坯在穿孔变形过程中,在纵向拉应力和横向切应力作用下,使卷入的大型渣滴沿纵向及横截面延伸扩展,最终形成钢管壁内的缺陷。   相似文献   

6.
研究了B2O3对低碱度[(CaO)/(SiO2)=3~4]和高碱度[(CaO)/(SiO2)=5~7.5]两个系列CaO基精炼渣熔化温度的影响。结果表明,用B2O3比用Al2O3和CaF2更有效降低CaO基精炼渣系的熔化温度,对低碱度渣系,B2O3替代渣中的部分CaF2、Al2O3以及SiO2,都能有效降低渣的熔化温度;对高碱度渣系,B2O3替代CaF2作助熔剂时,可实现在高(CaO)/(SiO2)和(CaO)/(Al2O3)下造具有超低熔化温度的CaO基精炼渣,既可提高造渣速度,又可提高渣的脱硫磷能力和吸收硅、铝脱氧产物的能力。  相似文献   

7.
通过Mo丝高温电阻炉采用正交实验法研究了LF精炼渣系(/%:28.75~58.05CaO、12.50~32.43Al2O3、0~15BaO、8~20SiO2、6MgO、10CaF2)的成分对高碳铬轴承钢GCr15(/%:0.99C、1.45Cr、0.034S)脱硫的影响。结果表明,当(CaO)/(Al2O3)=2.5,(SiO2)=14%,(BaO)由0增至8%时,精炼渣对钢液的脱硫率增加,(BaO)由8%增至15%时脱硫率降低;当(BaO)=7.5%,(SiO2)=14%时,随(CaO)/(Al2O3)增加,精炼渣的脱硫率增加;当(BaO)=7.5%,(CaO)/(Al2O3)=2.5时,随(SiO2)增加,精炼渣的脱硫率降低。钢液最佳脱硫效果的LF精炼渣组成为:6%~10%(BaO),3.5~4.0(CaO)/(Al2O3),8%~12%SiO2。  相似文献   

8.
为了研究适合高洁净度高碳钢的LF精炼渣渣系,通过FactSage热力学软件计算精炼渣碱度(R)、(CaO)/(Al2O3)对精炼渣熔点的影响,得出最合适的精炼渣成分。根据热力学计算的精炼渣成分,降低原有渣系的钙铝比,并将优化的渣系成分用于65Mn钢工业试验。结果表明:优化后的精炼渣系成分质量分数为CaO52%~58%、Al2O328%~33%、SiO28%~12%、MgO5%~7%、R=4~6、(CaO)/(Al2O3)=1.5~2;使用该渣系进行工业试验,LF出站时的T.[O]可达7×10-6~13×10-6,RH出站时的T.[O]可达6×10-6~12×10-6;钢中全氧质量分数基本可控制在10×10-6内;65Mn钢卷中的B类细系夹杂均不大于1级,达到高级优质钢要求。  相似文献   

9.
检测分析了加改质剂(/%:38~43Al,20~30Al2O3,27~31CaO,≤6SiO2,≤6MgO)改质210 t钢包顶渣前后超低碳钢(≤0.01%C)连铸坯中的夹杂物数量和尺寸分布,通过热力学分析,研究了改质剂对钢渣间氧平衡以及连铸坯中夹杂物的影响。结果表明,钢包顶渣改质前的精炼渣样成分为(/%)25.55~39.68CaO,8.51~15.14SiO2,6.34~27.09MgO,5.92~6.54Al2O3,17.32~22.24FeO,3.86~7.35MnO,改质后渣样成分为(/%)34.36~40.43CaO,7.69~11.47SiO2,6.42~7.31MgO,8.31~25.54Al2O3,11.94~20.78FeO,2.17~2.63MnO;采用钢包顶渣改质处理,实际渣中a(FeO)小于与钢液中氧相平衡的a(FeO),引起了钢液中的氧通过渣金界面向渣中扩散,从而降低了钢液中氧活度,显著改善钢液的洁净度和降低连铸坯中的夹杂物数量和尺寸,水口结瘤得到明显改善;同时,虽然渣中的a(FeO)下降较小,但钢液中氧活度得到了明显降低。  相似文献   

10.
试验研究了组分对碱度3~5的LF精炼渣(/%:37.5~54.8CaO,9.8~18.2SiO2,20~30Al2O3,4~10MgO,3~10CaF2)粘度的影响。结果表明,CaF2和Al2O3对渣粘度影响较大,碱度和MgO对粘度影响较小。随着CaF2含量的增加,渣粘度先降低后增加;随着Al2O3含量的增加,渣粘度逐渐降低。渣中Al2O3含量为20%,CaF2≥6%或渣中Al2O3含量为25%,CaF2≥3%时,1500℃渣的粘度值低于0.5 Pa.s。试验得出粘度较优组分为4~5R,25%~30%Al2O3,6%~10%MgO,3%~6%CaF2。100 t LF精炼TC80钢生产试验表明优化后精炼渣将钢水中的硫由0.020%脱至0.005%以下,脱硫率从优化前的72%提高至84%,LF精炼终点平均T[O]为14×10-6。   相似文献   

11.
吴辉强  顾超  林路  包燕平 《特殊钢》2016,37(1):34-36
SK5 弹簧钢(/% :0. 75 ~0. 84C, ≤0. 35Si, ≤0. 40Mn, ≤0. 035P,≤0.030S)经 100 t EAF-LF-VD-CC 流程生产。通过EAF出钢加硅镒合金和铝铁进行预脱氧,LF精炼过程添加80~150 kg铝镁钙和少量硅锭合金进行复合铝脱氧,精炼渣碱度11.13,(CaO)/(Al2O3) =4. 98等工艺措施,脱氧效果较明显,铸坯中平均全氧含量达到 11 x 10-6项,铸坯中氮含量达到35 x 10-6。冶炼过程夹杂物种类按纯Al2O3>硫化物一'MgO - A12O3 - CaO—MgO •Al2O3 • CaO • SiO2变化,铸坯中夹杂物主要为CaO-A12O3 • SiO2 - MgO系,其塑性化程度可通过调整精炼渣成分、降低精炼渣熔点实现进一步优化。  相似文献   

12.
研究的0.80%~0.82%C帘线钢的生产流程为80 t:BOF-CAS-LF-VD-150 mm×150 mm CC工艺。通过顶底复吹转炉出钢过程加入300 kg金属锰和200 kg高纯硅进行硅锰复合脱氧,LF过程先造碱度(CaO/SiO2)2.04的精炼渣,再将精炼渣碱度(CaO/SiO2)降至0.86,保持渣中Al2O3含量为~5%,来控制钢中非金属夹杂物的塑性转变。结果表明,铸坯平均总氧含量为16×10-6,氮含量控制在50×10-6左右,CAS(密封吹氩调成分)过程钢中夹杂物主要是MnO-Al2O3-SiO2;LF、VD过程钢中和铸坯中夹杂物主要是CaO-Al2O3-SiO2-MgO系,该类夹杂物尺寸偏小(2~3μm),分布在1 400℃低熔点区域附近。  相似文献   

13.
通过电弧炉出钢加铝铁、硅铁脱氧,LF精炼初渣的组分为(/%:27.39~37.34 Al2O3,38.42~38.68 CaO,14.20~18.38 SiO2,8.50~10.72 MgO,0.82~0.89 FeO,0.27~0.33 MnO,0.69~0.74 S,0.66~0.75TiO2,(CaO)/(SiO2)=2.09~2.72,(CaO)/(Al2O3)=1.04~1.40),LF终点T[O]为0.0012%~0.0019%,T[N]为0.0043%~0.0050%,[Ti]0.002%和[Ca]0.006%~0.009%。GCr15轴承钢LF精炼终点氧化物夹杂分析结果表明,钢中主要氧化物夹杂为镁铝尖晶石(MgO·Al2O3)和钙镁铝尖晶石氧化物(CaO·MgO·Al2O3)。镁铝尖晶石平均尺寸低于0.5μm,当有MnS、TiN等在其上析出后平均尺寸增大。钙镁铝尖晶石平均尺寸通常在2μm以上,在精炼温度下呈液态,易在钢中聚集长大,其尺寸(1.39~2.12μm)比固态的钙镁铝尖晶石-MnS夹杂物大,且更被精炼渣吸收并上浮去除。随着精炼过程钢液中的硫含量降低,以这两类尖晶石为核心的含MnS的复合夹杂物的平均尺寸降低。适当降低精炼终点渣中MgO的含量、光学碱度和黏度可以减少钢中夹杂物的数量并降低其平均尺寸。  相似文献   

14.
试验研究了五元渣(/%:50~65CaF2,6~15CaO,18~30Al2O3,4~10SiO2,1~7MgO)的组元含量、熔渣温度(1330~1463℃)对表面张力的影响。结果表明,随熔渣温度升高,其表面张力下降,1463℃五元渣的表面张力为0.372~0.418 N/m。60CaF2-15CaO-6SiO2-18Al2O3-5MgO具有较低的表面张力(0.375 N/m),较好的流动性和低粘度值。3 t电渣炉熔炼镍基合金Inconel 600和625的工业应用结果表明,电渣锭成分均匀,[O]≤20×10-6,[N]≤50×10-6,平均电耗从原ANF-6渣重熔的1933 kWh/t降至1 326 kWh/t。  相似文献   

15.
杜广巍  郭汉杰 《特殊钢》2016,37(4):18-22
55SiCr钢280 mm×325 mm铸坯(/%:0.55C,1.42Si,0.67Mn,0.008S,0.67Cr)的冶炼流程为80 t BOF-LF-RH-CC工艺。通过BOF出钢加Al和硅铁合金,同时加入精炼渣,控制精炼过程渣碱度R(CaO/SiO2)为2.0左右,RH≥20 min,软吹搅拌≥15 min,控制钢中夹杂物转变,得到洁净弹簧钢55SiCr。分析结果表明,LF精炼过程中夹杂物由早期的Al2O3-SiO2-MnO和Al2O3夹杂将逐渐转变为Al2O3-CaO-SiO2夹杂,RH真空处理后夹杂物全部转变为Al2O3-CaO-SiO2夹杂,LF开始精炼T[O]和[N]分别为36×10-6和26×10-6,铸坯T[O]、[N]分别为7×10-6和43×10-6,铸坯中夹杂物主要为Al2O3-CaO-SiO2和Al2O3,尺寸≤10μm。   相似文献   

16.
南京钢铁公司采用100 t高阻抗超高功率电弧炉-100 t钢包精炼炉-5流150 mm×150 mm方坯连铸-连轧工艺生产GCr15轴承钢。GCr15轴承钢生产结果统计表明,通过炉料中配入55%~70%铁水,电弧炉出钢时碳含量0.22%~0.24%、磷含量0.004%~0.006%、硫含量0.040%~0.043%;精炼渣成分(%):53~58CaO、13~16SiO2、15~20Al2O3、3~5MgO,碱度2.3~3.3;精炼时全程吹Ar搅拌,67 Pa VD处理≥20min,连铸全程保护浇铸,使真空处理后GCr15轴承钢平均氧含量为10×10-6,铸坯中最低氧含量为7×10-6。  相似文献   

17.
研究的帘线钢的冶炼流程为150 tLD-RH-LF-软吹氩-CC工艺。通过LD出钢时加入Si-Mn脱氧,并在LF加入低碱度顶渣进行钢渣反应控制钢中非金属夹杂物的塑性。结果表明,RH-LF-中间包和铸坯阶段,钢中主要夹杂物分别为MnO-Al2O3-Si02(RH),Ca0-Al2O3-Si02(LF)和MnO-Al2O3-SiO2(中间包和铸坯),采用Si-Mn脱氧和SiC扩散脱氧,低碱度低Al2O3顶渣精炼,控制T[O]≤20×10-6,[A1]s≤0.0013%,可有效控制钢中夹杂物数量和尺寸,以及控制夹杂物中Al2O3含量并形成可塑性夹杂。  相似文献   

18.
以钢厂90 t RH精炼过程管线钢37Mn(/%:0.37C、0.21Si、1.44Mn、0.010P、0.003 4S)脱硫优化为目标,在实验室用GL-2型高温管式炉对原工厂用渣系:50CaO-35Al2O3-7SiO2-8MgO和脱硫剂:75.4CaO-20.1CaF2及优化渣系:57CaO-25Al2O3-10SiO2-8MgO和脱硫剂:70CaO-30CaF2共17个方案进行管线钢脱硫试验。结果表明,57CaO-25SAl2O3-10SiO2-8MgO精炼渣系和配合70CaO-30CaF2脱硫剂使用对钢液的脱硫效果最好,并且当渣量为5kg/t,脱硫剂量为0.7 kg/t时,能使钢液中的硫含量降到10×10-6。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号