首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
响应面法优化淀粉微球吸附姜黄素工艺研究   总被引:2,自引:1,他引:1  
采用反相悬浮法合成淀粉微球作用于姜黄素吸附量的最佳工艺条件。通过单因素实验和Plackett–Burman试验确定了交联剂用量、油水比例、合成温度和乳化剂用量对姜黄素吸附量的影响,根据中心组合设计原理采用四因素三水平的响应面分析法,得到淀粉微球吸附姜黄素的最佳工艺条件。结果表明,淀粉微球吸附姜黄素的最佳条件:交联剂用量为5.5 mL,油水比例为4.01∶1,反应温度为45.1℃,乳化剂用量为0.5 g,姜黄素吸附量预测值为1.228 mg/g,验证值为1.259 mg/g,与预测值的相对误差为0.031 mg/g。  相似文献   

2.
以玉米淀粉为主要原料,Span-60和Tween-80为乳化剂,以N,N-亚甲基双丙烯酰胺(MSDS)为交联剂,采用反相乳液法制备淀粉微球(CSM)。试验探讨交联剂用量和油水相体积比对淀粉微球平均粒径的影响;对比了淀粉和淀粉微球对金属铜离子的吸附性差异。结果表明:交联剂的用量和水油相体积比是影响微球粒径的主要因素;当交联剂用量为0.4 g,油水相体积比为5∶1时,被交联淀粉的吸附性最强;与淀粉相比,淀粉微球比淀粉对金属阳离子有更强的吸附作用,可作为一种良好吸附剂。XRD结果表明了所得淀粉微球的漫散衍射峰居多,FT-IR结果表明了淀粉与交联剂发生了明显的交联,SEM结果表明了所得淀粉微球结构致密、表面粗糙多孔。  相似文献   

3.
两步交联法制备淀粉微球的研究   总被引:1,自引:0,他引:1  
以可溶性淀粉为原料,Span-60和吐温为乳化剂,氯仿和环己烷的混合物为油相,N,N'-亚甲基双丙烯酰胺(MBAA)及环氧氯丙烷(ECH)为交联剂,采用两步交联法制备了淀粉微球,利用扫描电镜(SEM)、红外光谱和光透式粒度分析仪对产物进行了表征。结果表明,在反应时间及搅拌速率不变的条件下,MBAA用量、油水相体积比是影响微球粒径的主要因素;在反应时间为2.5h,搅拌速率为450r/min,油水相体积比为3∶1,MBAA用量为0.4g时,微球平均粒径分布较为均一,粒径在65μm以下微球的占95.5%。所得微球球形圆整,表面粗糙多孔,可用作药物载体和吸附剂。  相似文献   

4.
交联淀粉微球的制备与载药性能研究   总被引:1,自引:0,他引:1  
以可溶性淀粉为原料,Span-80和Tween-80为乳化剂,液体石蜡为油相,N,N'-亚甲基双丙烯酰胺(MBAA)及环氧氯丙烷(ECH)为交联剂,硝酸铈铵(CAN)为引发剂,采用反相乳液法制备淀粉微球。试验应用正交优化设计,选择淀粉浓度、油水比、交联剂MBAA用量、乳化剂用量和引发剂用量5个因素为考察对象,对淀粉微球的制备条件进行了优化。利用红外光谱和粒度分析仪对产物进行了表征。以胭脂红为模型药物,研究淀粉微球的载药性能。  相似文献   

5.
《粮食与油脂》2016,(7):23-25
用响应面法优化β–环糊精改性红薯淀粉制备慢消化淀粉,在单因素试验的基础上,选取β–环糊精用量、结晶温度、结晶时间为优化因素。最佳工艺条件为β–环糊精用量2.96%、结晶温度–19.64℃、结晶时间2.6 h,模型预测最大慢消化淀粉含量为32.14%,验证值为33.09%。同时研究了β–环糊精对红薯淀粉糊凝胶质构性质的影响。  相似文献   

6.
以木薯淀粉为原料,利用乳化-凝胶法结合冷冻干燥制备淀粉微球气凝胶,研究加热温度、时间、淀粉乳浓度及油乳比对淀粉微球气凝胶吸附性能的影响。利用响应面法优化工艺,制备淀粉微球气凝胶,以其对亚甲基蓝的吸附力作为评价指标。研究表明:淀粉微球气凝胶吸附性能受温度影响大,温度85 ℃、加热时间90 min、淀粉乳浓度为15%,其吸附力为((0.928±0.008)) mg/g,较原淀粉的吸附力增69.8%;粒度分布测量及扫描电镜分析结果显示:温度升高,淀粉颗粒膨胀,淀粉微球气凝胶的粒径逐渐增大,当温度升高至100 ℃时,气凝胶珊瑚状表面形成,表面变粗糙,粒径趋于稳定。  相似文献   

7.
氟苯尼考淀粉微球的制备及缓释性能的研究   总被引:1,自引:0,他引:1  
李仲谨  田晓静  杨威 《食品工业科技》2011,32(2):205-207,210
以可溶性淀粉作为原料,N,N′-亚甲基双丙烯酰胺为交联剂,采用包埋法制备了氟苯尼考淀粉微球,通过响应曲面实验设计,以载药量和包封率的综合得分为指标,优化了氟苯尼考淀粉微球的制备工艺;并进一步采用体外动态释药法评价其释药特征;分别用激光粒度分布仪和扫描电镜对载药微球进行了表征。结果表明最佳工艺条件为:淀粉4g、氟苯尼考0.18g,交联剂0.94g,反应时间1.46h;影响因素的大小依次为:氟苯尼考质量>交联剂用量>反应时间;按优化工艺参数制得的载药微球载药量28.1%,包封率为64.2%;氟苯尼考淀粉微球体外释药规律符合一级释放方程和Korsmeyer-Peppas模型方程;氟苯尼考载药微球具有一定缓释效果,其制备方法合理可行。  相似文献   

8.
以可溶性淀粉作为原料,N,N′-亚甲基双丙烯酰胺为交联剂,采用反相乳液聚合的方法制备了茶碱淀粉微球,利用正交实验得出了制备茶碱淀粉微球的最佳工艺条件。利用扫描电镜,X衍射分析和粒度分析仪对微球的微观结构和物相以及粒度进行了表征。结果表明:最佳工艺条件为淀粉浓度10%、淀粉和茶碱的质量比20:1、N,N′-亚甲基双丙烯酰胺1.0g、油水比3:1,通过紫外分光光度法测定最佳工艺条件下的载药量为32.6μg/mg,包封率为58.7%;淀粉微球表面稍显粗糙,平均粒径为110μm,粒度分布范围较窄,呈正态分布;载药后淀粉微球的结晶能力下降,结晶度约为6.2%。  相似文献   

9.
徐忠  伟宁  李强  樊丽花 《食品科学》2009,30(12):57-60
以大米淀粉为原料,环氧氯丙烷为交联剂,Span60 为乳化剂,大豆油为油相,采用逆相悬浮交联聚合法合成淀粉微球。应用正交优化设计,选择淀粉溶液浓度、油水相之比、乳化剂用量和交联剂用量四个因素为考察对象,对淀粉微球的制备条件进行优化,得出淀粉微球制备的最佳条件为:淀粉溶液浓度为25%,油水比为3:1(V/V)、乳化剂用量为0.5g、交联剂用量为2.0ml,制得的淀粉微球的平均粒径为13.73μm。  相似文献   

10.
以单宁、羧甲基纤维素为单体,环氧氯丙烷为交联剂,制备单宁/羧甲基纤维素复合水凝胶。通过单体质量比、交联剂用量、交联时间3个因素,优化单宁/羧甲基纤维素复合水凝胶的制备工艺。以阳离子染料亚甲基蓝为有机吸附质,考察了染料初始质量浓度、pH、温度等因素对水凝胶吸附性能的影响。正交实验表明,制备单宁/羧甲基复合水凝胶的最佳条件为:单宁/羧甲基纤维素质量比1.2∶1.0,环氧氯丙烷用量0.8%,交联时间36 h。吸附实验表明,当亚甲基蓝初始质量浓度大于1 500 mg/L时,水凝胶中的空隙被填充,吸附位点趋于饱和,吸附量达到最大530.43 mg/g;pH在中性条件下有利于增加水凝胶与亚甲基蓝之间的静电吸附与络合作用,吸附率为80.2%;热力学数据表明,水凝胶对亚甲基蓝的吸附为自发放热物理吸附过程,在常温条件下更利于吸附的进行。  相似文献   

11.
采用搅拌球磨机对木薯淀粉进行机械活化,以活化60 min木薯淀粉为原料、环氧氯丙烷为交联剂制备交联淀粉;探讨机械活化时间、反应时间、反应温度、交联剂用量、体系pH值对木薯淀粉交联反应影响,通过正交实验优化制备条件。结果表明,机械活化对木薯淀粉交联反应有显著强化作用;最优制备条件为:反应时间80 min、反应温度35℃、pH=10、环氧氯丙烷用量0.10 ml;在此条件下,制得交联淀粉沉降积为0.226 ml。  相似文献   

12.
采用反相悬浮法以淀粉接枝丙烯酸合成吸水性树脂;探讨单体与淀粉质量配比、交联剂、引发剂、油水体积比、单体中和度等因素对树脂吸水率影响,通过单因素和正交实验得到最优工艺条件:单体与淀粉质量配比5∶1、交联剂用量0.122 g、引发剂用量1.3 g、油水体积比1.3∶1、单体中和度70%;聚合物在自来水中最大吸液倍率为95 g/g,且产品具有良好吸水速率。  相似文献   

13.
以玉米淀粉为主要原料,吸水率为指标,利用五因素四水平正交试验对淀粉接枝丙烯酸树脂在反相乳液体系中的接枝反应进行了工艺研究。实验结果表明最佳的反应工艺条件:单体与淀粉质量配比2.5∶1、交联剂用量1.75%、引发剂用量2%、油水体积比1.2∶1、单体中和度50%。聚合物在自来水中最高吸水率为62 g/g,且产品具有良好的保水性。  相似文献   

14.
以液体石蜡为连续相,Span80和Tween80为复合乳化剂,采用反相乳液聚合法合成了玉米淀粉丙烯酸吸水性树脂,研究了反应条件对树脂吸水率的影响,并对树脂吸水动力学和耐热稳定性进行了研究,结果表明在单体(AA)与淀粉(St)质量比5∶1、油水体积比1.2∶1、引发剂(KPS)质量2 g、交联剂(NMBA)质量0.175 g、单体中和度60%、反应时间2.5 h、反应温度60℃下产品最大吸水率为70 g/g,树脂吸水过程符合一级动力学,产品具有较好的热稳定性。  相似文献   

15.
通过单级萃取实验,分别研究了三辛胺对酸性大红G模拟废水和酸性染料实际工业废水的萃取行为.针对酸性大红G模拟废水,废水CODCr为1526 mg/L时,考察了稀释剂、相比、pH等实验条件对萃取体系的影响,当v(煤油)∶v(三辛胺)=1∶2、相比1∶4、pH =2.0,萃取率达94.09%.对于酸性染料实际工业废水,正交实验结果表明,最佳条件为pH =2.0、相比=1∶3、v(煤油)∶v(三辛胺)=1∶2、废水初始CODCr=345 mg/L.以NaOH溶液作为反萃取剂,对萃取相进行反萃取,回收物浓缩倍数可达3.6.  相似文献   

16.
以绿豆淀粉为原料,一氯乙酸作为醚化剂,乙醇为溶剂,制备羧甲基绿豆淀粉。以20 g绿豆淀粉为基准,采用正交和单因素试验对制备工艺进行优化,探讨氢氧化钠用量、一氯乙酸用量、醚化温度、醚化时间对产品取代度影响。试验结果表明,其最佳制备工艺条件为:氢氧化钠用量(氢氧化钠/淀粉摩尔比)1.3、一氯乙酸用量(一氯乙酸/淀粉摩尔比)1.0、醚化温度52℃、醚化时间120 min;在此条件下,制得羧甲基绿豆淀粉取代度为1.05。  相似文献   

17.
玉米淀粉生物降解薄膜的制备及其生物降解特性的研究   总被引:9,自引:0,他引:9  
以天然高聚物玉米淀粉为原料,经增塑、增强、交联后制备全生物降解薄膜。通过正交实验确定了三种增塑剂的协同作用最佳配比,探索了增强剂、交联剂对薄膜力学性能的影响,研究了该薄膜的生物降解特性,并通过X-衍射对该膜的结构进行表征。结果表明:三种增塑剂的最佳用量为15%水、2%丙三醇、2%尿素,20%增强剂聚乙烯醇、5%交联剂乙二醛,所制备的膜强度达到国标GB4456-84所规定的标准;淀粉经塑化、交联后,次价键断裂,晶区被破坏,使淀粉具备热塑性。该膜微生物生长达到4级,土埋20天后,失重率达到90%。该研究结果为用淀粉制造一次性生物降解膜、消除“白色污染”、提供了理论依据和实际参考。  相似文献   

18.
为增强保加利亚乳杆菌(Lactobacillus bulgaricus)的抗逆性,提高其在产品中的存活率,该研究采用内源乳化法制备保加利亚 乳杆菌微胶囊,并通过单因素试验和响应面试验对其制备工艺进行优化。结果表明,最佳微胶囊制备工艺参数为海藻酸钠质量分数2%, 复合壁材海藻酸钠与果胶质量比1∶1,水相油相体积比1∶2.5,交联剂碳酸钙与海藻酸钠质量比1:2,乳化剂Span-80体积分数1.5%,搅拌 速率400 r/min。在此优化条件下,利亚乳杆菌微胶囊包埋率达到91.8%。  相似文献   

19.
该文采用干酪乳杆菌与鼠李糖乳杆菌混种发酵大豆低聚糖,优化大豆益生元发酵豆乳制备工艺。通过单因素及正交试验,得到最佳工艺为:干酪乳杆菌与鼠李糖乳杆菌比例1∶1、果胶的添加量0.3%、豆粉与水质量体积比1∶12(g/mL)、脱脂乳粉添加量24%、大豆低聚糖添加量25%、接种量5%、发酵温度37℃、发酵时间7 h、后熟时间18 h^24 h。食用150 mL/d此条件下制备的大豆益生元发酵豆乳不仅感官品质最佳,并且对益生菌的生长具有显著的增殖作用。  相似文献   

20.
多种酶法处理提高马铃薯回生抗性淀粉制备率   总被引:5,自引:1,他引:4  
以马铃薯淀粉为原料,以抗性淀粉制备产率为考察指标,研究α–淀粉酶、糖化酶和纤维素酶种类、酶加量、酶解时间、酶解温度、酶解pH、多种酶最佳配比及酶解顺序对RS3型抗性淀粉制备产率影响。固定条件:淀粉乳10%,高压温度120℃,高压时间30min,老化温度4℃,老化时间12h,糖化酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:糖化酶加量为1,200U/mL,酶解时间为60min,pH为5.0,酶解温度为55℃,制备产率达8.862%;纤维素酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:纤维素酶加量为40U/mL,酶解时间为45min,pH为5.0,酶解温度为35℃,制备产率达17.748%。α–淀粉酶、糖化酶和纤维素酶两两联合处理、三种酶共同处理均使马铃薯回生抗性淀粉制备产率降低;而纤维素酶处理可大大提高马铃薯回生抗性淀粉制备产率。RS3制备过程系为通过破坏纤维素等阻隔淀粉分子聚集的非淀粉物质提高制备产率,比将淀粉分子分解从颗粒结构中释放出以提高RS3制备产率更为有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号