首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对试验GS35C-A钢(/%:0.34~0.35C,0.20~0.22Si,0.69Mn,0.013~0.016P,0.026~0.045S,0.027~0.046A1,0.000 8~0.001 9Ca)夹杂物变性进行了热力学计算,并对工艺1[BOF-LF(硫合金化)-RH-钙处理-CC]和优化工艺2[BOF-LF-RH-钙处理-硫合金化-CC]对应的钢中夹杂物形貌及数量进行了研究。结果表明:(1)随着钢液中[S]的升高,生成CaS所需的平衡钙含量降低,钙处理变性生成低熔点夹杂物时钢液中的[Al]逐渐降低;(2)优化工艺2后RH离站Ca、S含量分别从优化前(工艺1)的0.001 9%和0.045%降至0.000 8%和0.026%,平均连浇炉数由原2.5炉提高至8炉;(3)优化前(工艺1)中间包典型夹杂物组分为硫化钙包裹的镁铝尖晶石,优化后(工艺2)中间包夹杂物为铝酸钙;RH离站、中间包钢中每mm2夹杂物个数分别从优化前9.09和6.23降至5.06和3.76。  相似文献   

2.
为研究LF-RH精炼工艺生产Q690钢时不同钙处理时机下夹杂物特征的变化,开展工业试验对RH精炼前后钙处理炉次取样进行定量分析对比。钙处理后夹杂物中CaO质量分数持续增加,CaS质量分数瞬态增加,夹杂物熔点降低。RH精炼前钙处理炉次中,RH精炼过程夹杂物的成分接近低熔点区,结束时夹杂物数量密度和面积分数分别为15个/mm2和0.01%。RH精炼后钙处理炉次中,RH精炼过程夹杂物依旧为高熔点Al2O3-MgO类型,结束时夹杂物数量密度和面积分数分别降至1个/mm2和0.002 5%。RH精炼前钙处理会使RH精炼过程夹杂物熔点以及夹杂物与钢液间的接触角降低,导致夹杂物去除驱动力降低,从而抑制夹杂物的去除。因此LF-RH精炼工艺生产铝脱氧钢时,为提高精炼过程钢中非金属夹杂物的去除效率,应在RH精炼后进行钙处理操作。  相似文献   

3.
《特殊钢》2020,(5)
SCM435钢的生产流程为80 t BOF-LF-RH-280 mm×325 mm坯连铸。LF终点精炼渣成分为(/%):45~55CaO,10~15SiO_2,20~30Al_2O_3,∑(FeO+MnO)≤1%。分析了RH加钙(0.001 3%Ca)和RH不加钙(0.0002%Ca)对Φ13 mm盘条中D和Ds夹杂物的影响。结果表明,RH不加钙处理工艺夹杂物最大尺寸为7.65μm,Ds≤0.5级合格率为100%;RH加钙处理工艺夹杂物最大尺寸为25.68μm,Ds≤0.5级合格率为95%。在数量控制方面,RH不加钙处理工艺夹杂物指数由RH加钙工艺的0.72降至0.68,D类≤1.0合格率由RH加钙工艺的30%提高至75%;RH不加钙处理工艺夹杂物主要为MgO·Al_2O_3,少量钙铝酸盐夹杂,RH加钙工艺为镁铝尖晶石、钙铝酸盐和CaS多相夹杂。因此,在脆性D类和Ds类夹杂物尺寸、数量和类型控制上,RH不加钙处理工艺改善效果明显。  相似文献   

4.
SCM435钢的生产流程为80 t BOF-LF-RH-280 mm×325 mm坯连铸。LF终点精炼渣成分为(/%):45~55CaO,10~15SiO2,20~30Al2O3,∑(FeO+MnO)≤1%。分析了RH加钙(0.0013%Ca)和RH不加钙(0.0002%Ca)对Φ13 mm盘条中D和Ds夹杂物的影响。结果表明,RH不加钙处理工艺夹杂物最大尺寸为7.65μm,Ds≤0.5级合格率为100%;RH加钙处理工艺夹杂物最大尺寸为25.68μm,Ds≤0.5级合格率为95%。在数量控制方面,RH不加钙处理工艺夹杂物指数由RH加钙工艺的0.72降至0.68,D类≤1.0合格率由RH加钙工艺的30%提高至75%;RH不加钙处理工艺夹杂物主要为MgO·Al2O3,少量钙铝酸盐夹杂,RH加钙工艺为镁铝尖晶石、钙铝酸盐和CaS多相夹杂。因此,在脆性D类和Ds类夹杂物尺寸、数量和类型控制上,RH不加钙处理工艺改善效果明显  相似文献   

5.
张正群 《特殊钢》2018,39(1):48-50
RH精炼过程加铝前IF钢(/%:≤0.005C,≤0.04Si,0.05~0.20Mn,≤0.015P,≤0.015S,0.03~0.06Als)中的氧含量为340×10-6~467×10-6,用Aspex扫描电镜研究了加铝后210 min钢中夹杂物类型、尺寸和数量,结果表明,IF钢在RH工序加铝脱氧后钢液中夹杂物的类型主要为氧化铝,随着RH循环时间的增加,钢液中夹杂物数量减少;加铝真空循环6 min后可进行合金化,进一步延长循环时间,钢液中夹杂物的去除速度减缓;加铝前IF钢液中的初始氧含量偏高时,可适当延长循环时间至8 min,再进行合金化。  相似文献   

6.
 为了优化不同钢种的LF精炼钙处理工艺,研究了高强结构钢、低碳结构钢、焊瓶钢、耐磨钢、高碳钢在LF精炼及钙处理过程中夹杂物的演变机理。结果表明,渣 钢反应时间越长,钙处理前的夹杂物变性越彻底。钙处理前焊瓶钢夹杂物以Al2O3为主,高强结构钢、低碳结构钢夹杂物以MgO Al2O3 CaO复合夹杂为主;高碳钢、耐磨钢夹杂物以低熔点的Al2O3 CaO夹杂为主。钙处理工艺会增加钢液中夹杂物数量及尺寸。控制Al2O3 SiO2 MnO复合夹杂物的关键是避免LF精炼中后期进行硅锰合金化。综合考虑各方面因素,建议焊瓶钢增加当前的钙线喂入量,高强结构钢、低碳结构钢使用轻钙处理工艺,高碳钢、耐磨钢取消钙处理工艺。  相似文献   

7.
针对某特钢企业炼钢厂含硫齿轮钢20CrMnTiH(ZH)生产过程中存在的硫成分控制不稳定、钢水易结瘤问题,开发出一种LF精炼前期造高碱度炉渣(R3>1.6)脱氧,后期改性为低碱度R3为1.2~1.4增硫的冶炼新工艺,并对硫合金化和钙处理工艺进行了优化,硫合金化时机由VD处理后调整到VD处理前,减少真空处理后钙线喂入量,钢中硫成分得到稳定控制,A类非金属夹杂物评定级别降低,细系2.5级别检验合格率98.04%,细系3.0级别检验合格率100%,较工艺优化前效果改善明显。金相检验结果显示,钢中硫化物夹杂尺寸细化,长度较短,在钢中均匀分散分布,对改善钢材切削性能和减少对钢材力学性能的危害更为有利。钢中全氧平均质量分数由18×10-6降低到11×10-6,改善了可浇性,单中包平均连浇炉数由9炉提高到12炉以上。  相似文献   

8.
本文分析和讨论了在钙处理铝镇静钢冶金中起重要作用的Fe-Al-O和Fe-Al-Ca-S-O系的热力学原理。考虑到钙处理铝镇静钢的产物,分析了能够改善浇注性的液相铝酸钙的形成。理论分析和实践调查了铝酸钙液相。顶渣在出钢后就形成,在无论有无RH处理的钢包处理过程中其组成 是相当稳定的。然而,脱气处理炉的顶渣与非脱气处理炉的顶渣相比,其氧含量很低。在钢包处理过程中发现存在夹杂物相。用RH处理炉的夹杂物与不用RH处理炉的夹杂物有很大的差异,并在很大程度影响了钙处理的效率。  相似文献   

9.
为了进一步提高生产效率、降低生产成本,同时减少大尺寸夹杂物超标,提出了采用"BOF-RH-CC"路线生产车轮钢工艺。通过系统地实验室试验与工业试验,研究了"BOF-RH-CC"工艺路线下的硫含量、温度以及夹杂物控制等关键技术问题。结果表明:在KR工序通过采用新型脱硫剂,可以将84%炉次的铁水硫的质量分数控制在10×10~(-6)以下;在转炉工序回硫主要影响因素为KR脱硫渣,当扒渣率为95%时,KR渣带硫量占入炉总硫量比例达到了26.7%,而当扒渣率在99%时,KR渣对转炉回硫仅占6.8%,应当保证KR处理后顶渣去除率控制在99%以上;在精炼RH工序当RH吹氧升温量不大于100 m~3,不仅满足温度要求,同时也达到了洁净度的要求;在低氧条件下将夹杂物控制为高熔点且不易变形的CaS-Al_2O_3类夹杂,降低了钢种大尺寸夹杂的数量。通过上述研究,在"BOF—RH—CC"工艺路线下,可将成品钢中硫的质量分数和TO的质量分数分别控制在20×10~(-6)和12×10~(-6)以下,同时钢中大尺寸夹杂物数量降低了50%,满足钢种对硫含量、温度及夹杂物的要求,实现了该工艺的稳定控制。  相似文献   

10.
鞍钢股份有限公司鲅鱼圈钢铁分公司根据超低硫管线钢的硫含量要求,采取了优化铁水预处理、采用优质废钢且顶底复吹效果好的转炉冶炼、炉后渣洗脱硫、LF炉顶渣充分改质、RH后喂线进一步球化处理硫等措施。结果表明,成品硫控制在10×10~(-6)以下,成品钙控制在15×10~(-6),A类(硫化物)夹杂细系≤1为100%,粗系≤0为100%,探伤合格率为97.36%。  相似文献   

11.
 利用ASPEX全自动扫描电镜对X70管线钢RH真空处理过程的夹杂物形貌、成分、数量和尺寸进行了系统研究。结果表明,RH过程中夹杂物主要为液态球状含少量MgO的CaO-Al2O3系夹杂物。夹杂物随RH真空处理时间的增加而减少,RH处理28min后,钢液中夹杂物去除率达70%。除延长RH真空处理时间外,减少RH进站夹杂物可大幅降低RH终点夹杂物数量。总体夹杂物和1~5μm夹杂物数量随RH真空处理时间单调递减;对于大于5μm的夹杂物,其数量先增大后减少,而且随着夹杂物尺寸的增加,数量达到最大值所需真空处理时间增加。RH真空处理后,夹杂物平均尺寸有所增加,由2.2~2.5μm增加到3.0~3.9μm。  相似文献   

12.
《炼钢》2017,(2)
为了合理选择低碳铝镇静钢的二次精炼工艺,满足现代钢铁厂高效、洁净、低成本以及大规模稳定生产的需求,对LF精炼+钙处理、CAS精炼、LF精炼不钙处理、RH普通处理、RH轻处理等5种不同二次精炼工艺进行了对比分析。结果表明,RH轻处理工艺更适合生产碳含量窄成分控制的低碳铝镇静钢,工序成本最低33.17元/t;RH普通处理工艺钢水纯净度最好,中包钢水平均w(T.O)=16×10~(-6),精炼结束夹杂物总量11.2个/mm~2。应优先采用RH轻处理工艺,其次采用RH普通处理或CAS精炼工艺。LF可不采用钙处理工艺,对于有脱硫任务和连铸水口堵塞严重的钢厂采用LF精炼+钙处理更具有优势。  相似文献   

13.
郝鑫  王新华  王万军 《钢铁》2015,50(3):54-58
 通过工业试验研究了中厚板钢LF→钙处理→RH精炼过程中夹杂物的转变规律,并对钙处理过程夹杂物转变进行了热力学计算分析。结果表明:精炼过程钢中总氧质量分数降低,夹杂物数量密度降低,夹杂物平均尺寸升高;钙处理后夹杂物为CaO-MgO-Al2O3-CaS四元系;RH破空后夹杂物转变为CaO-MgO-Al2O3三元系,夹杂物中CaO质量分数降低,Al2O3质量分数升高;热力学计算表明,钙处理后钢液可直接生成CaS,也可与钙铝酸盐夹杂物反应生成CaS,RH破空后不能生成CaS。  相似文献   

14.
《特殊钢》2017,(6)
试验Ti-IF钢(/%:≤0.003 5C,≤0.03Si,0.08~0.20Mn,≤0.025P,≤0.015S,0.05~0.07Ti,0.030~0.055Als,≤0.004 0N)BOF终点[C]0.03%~0.06%,终点[O]0.003 0%~0.060 0%,出钢过程加石灰和含Al钢包顶渣改质剂,RH终渣组成/%:53.38CaO,7.05FeO,1.01MnO,31.4Al_2O_3,5.7MgO,0.3P_2O_5,0.022S。RH精炼过程取样分析表明,通过加顶渣改质剂,控制8%(FeO+MnO),CaO/Al_2O_3=1.7,能较好去除钢中夹杂物,精炼过程钢中氧含量逐步下降,铸坯中氧含量为0.001 4%,氮含量为0.001 5%;脱碳结束时夹杂物主要为MnO;铝脱氧结束之后为Al_2O_3;合金化后为Al_2O_3及Al-O-Ti复合夹杂物;在铸坯中,前述夹杂物有效去除,但在凝固过程析出TiN夹杂。  相似文献   

15.
《炼钢》2015,(4)
对江苏沙钢集团有限公司RH处理W470无取向硅钢脱氧工艺进行了优化研究。试验结果表明,RH终点钢水w(T.O)由(20~30)×10-6降至(15~20)×10-6,硅和锰氧化量减少,含SiO2、MnO类大尺寸复合夹杂的数量大幅度减少;铸坯中大尺寸复合夹杂数量进一步减少,电镜观察20μm以上夹杂物数量及最大夹杂物尺寸均大幅度降低;但由于顶渣T.Fe含量偏高,对钢水存在一定的二次氧化,铸坯中小尺寸Al2O3类夹杂数量依然较多。此外,工艺优化后,合金中硅和锰元素的收得率均有所提高。  相似文献   

16.
 利用ASPEX扫描电镜(SEM+EDS)对某厂两种钙处理工艺(工艺A:LF→钙处理→RH,工艺B:LF→RH→钙处理)生产X70管线钢冶炼和浇铸过程中的夹杂物进行系统的研究。结果表明:工艺A生产的X70管线钢板中夹杂物是CA6和CA2(C代表CaO,A代表Al2O3)为主的高熔点的钙铝酸盐。产生此类夹杂物的主要原因是RH真空精炼中钙的严重损失以及中间包的二次氧化。CA6和CA2等夹杂物极易聚集成大尺寸夹杂物,经过轧制后严重影响钢板性能,甚至导致钢板探伤不合格。工艺B生产的X70管线钢中夹杂物为CaO-Al2O3(少量)-CaS系夹杂物,这种夹杂物尺寸小,弥散分布,对轧板性能危害小。  相似文献   

17.
为了减少管线钢中B类夹杂物的生成,开展了钙处理工艺优化研究。研究发现,钢中钙含量较高时,易生成由低熔点钙铝酸盐组成的B类夹杂物。据此提出低钙含量的钙处理优化工艺并开展工业试验。钙处理工艺优化后,夹杂物主要为高Al_2O_3含量的CaO-Al_2O_3,由于存在高熔点相,大部分夹杂物在轧制过程中基本未发生变形,而大尺寸夹杂物则主要发生脆性破碎,这与工艺优化前低熔点夹杂物的塑性变形明显不同。轧板中基本未观察到长宽比大于5的夹杂物,且大尺寸夹杂物的数量显著减少。通过钙处理工艺优化,管线钢中B类夹杂物得到了很好的控制。  相似文献   

18.
为了更好地控制WG350无取向电工钢中的夹杂物,采用扫描电子显微镜、Aspex系统分析了精炼、连铸过程和成品板中夹杂物的类型、数量及尺寸的演变规律。结果表明,氩站开始出现大尺寸含P复合夹杂物,该类型夹杂物大部分在RH脱碳后会上浮去除。RH加铝脱氧时生成的Al_2O_3以团簇状和块状为主,前者尺寸范围为0.5~5μm且大部分被去除,而块状Al_2O_3会一直遗留至成品中。RH合金化后,钢液中夹杂物数量达到最大,夹杂物类型除Al_2O_3外,主要还有复合氧化物、复合氧硫化物。成品板中夹杂物种类及数量关系为:氧硫化物氧化物氮化物氮化物+氧化物氮化物+硫化物氮-氧-硫复合物硫化物。钢中氧硫(质量分数)由49×10~(-6)降低至13×10~(-6)时,夹杂物种类及数量均会大幅度减少。  相似文献   

19.
为探究降低顶渣氧化性对改善超低碳钢钢液洁净度的影响,在转炉终点至中间包过程中,在多位置取炉渣和钢水试样,分别进行炉渣氧化性、钢液成分和夹杂物分析.实验结果表明:转炉出钢后通过对顶渣改质,渣中T.Fe由转炉终点的19.18%降至RH进站时的4.68%,顶渣氧化性降低明显.渣中T.Fe降低导致钢中[O]的降低,T.Fe较低的炉次平均吹氧量较大,使得铝脱氧前钢中[O]较高.RH结束渣T.Fe与夹杂物数量呈线性关系,T.Fe越低夹杂物数量越少,同时RH结束后夹杂物数量与铝脱氧前钢中[O]无必然关系.顶渣(CaO)/(Al2O3)会影响其吸收Al2O3夹杂物的能力,(CaO)/(Al2O3)控制不合理的炉次,其夹杂物数量也较多.通过降低顶渣氧化性,热轧板卷缺陷率得到明显降低.   相似文献   

20.
 为了更好地控制CSP工艺下电工钢中的夹杂物,研究了涟钢CSP工艺含铝电工钢夹杂物在精炼连铸热轧过程中的演变机理。RH合金化后钢中夹杂物有Al2O3,Al2O3 SiO2和Al2O3 CaO CaS 主要3种,RH出站和中包钢液中的夹杂物主要是Al2O3 CaO CaS和少量单独的Al2O3和CaS夹杂。减少钢液中夹杂物的主要措施是降低RH出站前的顶渣氧化性。热轧卷材样中夹杂物与钢液中夹杂物不同,主要是AlN和MnS,夹杂物总量与氮、硫质量分数呈正相关,氮元素的影响最显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号